A remarkable photo of the ball-bat
collsion (from Champaign News-Gazette)

Welcome to my site devoted to research on the physics of baseball. My particular research interests are two-fold: the physics of the baseball-bat collision and the flight of the baseball. I have done quite a bit of independent research in both areas. I am also heavily involved with several areas of practical interest to the game. One is characterizing, measuring, and regulating the performance of non-wood bats, an area for which I have served on committees advising the NCAA and USA Baseball. Another is exploiting new technologies for tracking the baseball, such as PITCHf/x, HITf/x, and TrackMan, for novel uses in baseball analytics. But this site does much more than catalog my own work. It attempts to provide links to much of the high-quality work done over the past decade or so on various aspects of the physics of baseball. If readers know of a site that I have overlooked, please contact me.

Recent Research Highlights

The Physics of Baseball, 1920's style

My analysis of an article from 1920 about the physics of a Babe Ruth home run, appearing in the middle of the season when Ruth hit 54 home runs, nearly doubling his own single-season record of 29 from the previous year. We know a lot more about the physics of baseball now than we did nearly 100 years ago. As a result, there is some wrong physics in the article. I discuss all of that in my analysis. My thanks to Greg Rybarczyk (@hittracker) for calling this article to my attention.

Bats: They're Not Just Flying Mammals. The Science of the Baseball-Bat Collision.

Slides of my talk at the 4th annual Saberseminar, Boston University, August, 2014.

ball-bat

Marco Scutaro "squares up" and hits a line drive single in 2012 NLCS.

In the presentation, I talked about general features of the baseball-bat collision, including how the batted ball speed depends on pitch and swing speed. Also discussed are the role that vibrations play in determining the "sweet spot" of the bat; the factors that contribute to bat performance; the reason why aluminum generally outperforms wood; and the use of science to regulate the performance of bats, especially as applied to the so-called BBCOR bats used by the NCAA and high schools.

The New MLB Tracking System: STATCAST

ball-bat

Jason Hayward runs 80.9 ft along a nearly
straight-line path to make a spectacular diving catch.

At the Sloan Sports Analytics Conference in Boston on March 1, 2014, MLBAM made a presentation about a new tracking system that will effectively track everything on the field: the pitched and batted baseball and all the players. Although not officially announced, it is my understanding from discussions with people in the know that the new system is a merger of radar and video technology, taking full advantages of the strenghts of each. Doppler radar is the natural technology for tracking the baseball. Video is the natural technology for tracking the players on the field. Together, they offer a powerful tool that has the potential to revolutionize baseball analytics. A great example of how the tracking technology might be used in broadcasts is shown in this clip. The new technology is a partnership between Trackman for the Doppler radar and Hego for the video. The new system will be installed at Miller Park in Milwaukee, Target Field in Minnesota, and Citi Field in New York for 2014, with a rollout to 29 USA parks (with Toronto still under discussion) for 2015. It is still not known how much, if any, of the data will be publicly available. As I learn more about this new technology and the MLB plans for rolling it out, I'll be posting at this site.