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I. INTRODUCTION

A couple of weeks ago, my article Contributions to Variation in Fly Ball Distance ap-
peared in FanGraphs. The purpose of the article was to answer a question I had long ago
posed about the factors that result in the variation of fly ball distances. The closing sentence
of that paper was, “It is now time to put this baby to rest.” But I didn’t put it to rest.
I received a number of interesting private communications offering suggestions for further

analysis. So, here I am again!

II. A NEW ANALYSIS

Following both the suggestions as well as some new thoughts of my own, I decided to

redo the analysis with some significant modifications.

1. The data set was enlarged considerably, from 719 to 4697 batted balls, a 6.5-fold
increase. This was achieved in part by including data not only from Tropicana Field
but also from six additional stadiums with a retractable roof, but only for games in
which the roof was closed: Chase Field, Marlins Park, Miller Park, Minute Maid Park,
Rogers Centre, and T-Mobile Park. In addition, it included data not only from the
2019 season but from 2016-2018 as well. Finally, the range of launch angles 6 was
expanded from 25°-30° to 15°-40°, keeping the range of exit velocities v9p=94-112 mph.
This change allows investigation of batted balls of varied character. As before, only
batted balls were included in which the tracked distance was at least 80% of the total

distance.

2. A split-data analysis was done, with half of the data randomly selected as “training
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data” and the remaining half used as “test data”. The models were established by
fitting to the training data and evaluated based on how well they described the test

data. This analysis is discussed in Sec. III.

3. The physical variables that constituted the model were modified as follows:

e Since the batted ball distance is expected to vary greatly over the increased range

of 6, that variable needs to be part of the model.

e While the exit velocity vy, the backspin wy, the sidespin wg, and the launch angle
0 may depend on the adjusted spray angle ¢;,! there is no reason why a batted
ball distance should otherwise depend on it.?2 Therefore, ¢, was eliminated as a

model parameter.

e The is no physical reason why the batted ball distance should depend on the sign
of ws. Therefore wy was eliminated as a model parameter and replaced by the

absolute value | wg |.

4. In the earlier study some fraction of the variation in batted-ball distances was at-

tributed to noise. 1 take a closer look at the factors contributing to the noise in

Sec.IV.

5. As before the spin-independent drag coefficient C'py was determined from analysis of
the first ~2 sec of batted-ball trajectory. As will be discussed in Sec. V, a separate
study was done to compare these values with those obtained from the corresponding
pitched-ball trajectory. Also presented is a discussion of why it is better to use the

batted-ball value.

I1II. THE SPLIT-DATA ANALYSIS

The results of the random split-data analysis is shown in Table I, in which the outcome

of the sequence of models is presented. Each of Models 1-4 is a non-parameteric generalized

I Recall that the adjusted spray angle is such that it is negative for balls hit to the pull field and positive

for balls hit to the opposite field, independent of the handedness of the batter.
2 While wind could introduce a dependence on ¢, I am only considering data from closed stadiums.



additive model (GAM). Model 5 will be discussed in Sec. IV. Some comments on the GAM

models follow:

e There is virtually no difference in the R? or residual rms values for the training and
test data, giving us confidence that the the GAM’s have predictive value and that

there is no “overfitting”.

e Comparing Model 1 to Model 2, one sees that including the total spin w produces very

little net improvement to the fit.

e On the other hand, breaking w into its constituent parts (Model 3) results in a signif-
icant improvement, reducing the residuals by more than a factor of two. The lesson
learned is simple: Knowing the total spin rate is not enough; one also needs to know
the spin axis. This conclusion was not obvious in the previous analysis due to the

inclusion of ¢; as a fitting parameter.

e Finally, including Cpg (Model 4) produces only a marginal improvement, suggesting
that variation of the drag plays only a small role in comparison to the residual random

measurement noise. I postpone further discussion of this feature until Sec. IV.

TABLE I: Model fits to batted-ball distance, where R? is the square of the Pearson correlation
coefficient and rms is the root-mean-square deviation of the fit from the data. The fits were done
on the training data, then applied to the test data. Models 1-4 utilize a GAM, whereas Model 5 is
a Deming regression applied to the residuals of Model 3.

Training Test
Model Parameters R?* rms (ft)|| R* rms (ft)
1 vo+06 0.678 239 ||0.682 23.9
2 vo+0+w 0.706 22.8 |[|0.706 23.1
3 vo+0+wp+| ws | 0.935 10.6 |0.937 10.6
4 | wvotftwnt|w |[+Cpo 0953 9.1 0955 9.1
5 |Model 3 + Deming on Cpg|| — — 10951 9.5

Plots comparing fitted to actual distances for Models 3 and 4 are shown in Fig. 1, clearly
showing the role played by Cpg. A plot of the Model 4 residuals is given in Fig. 2, which

indicates that the model accurately describes the data to 2 ft over the range of distances
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320-420 ft. Finally, Fig. 3 shows the Model 4 fits of batted-ball distances as a function of
various parameters, with other parameters fixed. Some interesting features of Fig. 3 are

worth pointing out:

e Both the launch angle and the backspin rate that maximize the distance decrease with
increasing exit velocity. In both cases, this behavior is the result of the increase in

drag with velocity.

e With other parameters fixed, the distance decreases with increasing C'pg, as one in-
tuitively expects. Interestingly, the rate of decrease is greater at higher exit velocity.

Once again, this behavior is the results of the increase in drag with exit velocity.
e The dependence of distance on exit velocity is approximately linear.

e For reasons discussed in an earlier article, batted-ball distance decreases with increas-

ing sidespin.
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FIG. 1: Plot of fitted vs. actual distance for Models 3 and 4, as indicated in each graph, with the
dashed line representing equality. The square of the Pearson correlation coefficient R? and the rms
deviation of the data from the fit are indicated. In the top graph, in which all physically relevant
variables other than Cpg are included, the colors indicate C'pg, with blue the largest (~ 0.34), white
the midrange (~ 0.30), and red the smallest (~ 0.26), and clearly show the inverse relationship of
distance to drag.
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FIG. 2: Plot of Model 4 residuals vs. actual distance, along with a trend line. The tilting of the

latter shows a bias in the fit. Nevertheless, the model is accurate to £2 ft over the range 320-420
ft.
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FIG. 3: Model 4 fits of batted-ball distances, with fixed parameters indicated on the graphs.
Upper left: Distance vs. exit velocity for ws = 0 (solid), ws=1000 rpm (dashed), and ws=2000
rpm (dotted). Upper right: Distance versus launch angle for various exit velocities. Lower left:
Distance vs. backspin for various exit velocities. Lower right: Distance vs. Cpg for various exit
velocities.



IV. CONTRIBUTIONS TO THE MEASUREMENT NOISE

From Table I, one can determine the contribution of the various parameters to the variance
in batted-ball distance for fixed exit velocity and launch angle. These results are shown in
Table II. By far, the largest contribution are the individual spin components, which are
determined from the combination of total spin rate and spin axis. The contribution of
Cpo is similar to that found in the earlier study and is interpreted to be the variation in
distance due to a ball-to-ball variation in the drag coefficient. But what about the random
measurement noise, which is actually somewhat larger here than earlier, quite possibly due
to the larger launch angle range? To what do we attribute that? That is the focus of this
section.

Under the assumption that the measured launch parameters (vg, 6, wy, and ws) are
relatively noise-free,® the two remaining sources of noise are in the measurements of the
distance d and the spin-independent drag coefficient C'pg. Given that the total contribution
of noise is 9.1 ft (Table II), the question I ask is how is that noise distributed between d and

Cpo? 1 start by defining the quantities of interest:

e o, = contribution to variation in distance due to ball-to-ball variation in Cpy. This
quantity was determined in Model 4 and is listed in Table II. In this section, I take an

alternate approach.
e 0,, = contribution to the random measurement noise due to the measurement of C'p.
e 0, = contribution to the random measurement noise due to the measurement of d.

I start with Model 3, which includes all physical parameters other than Cpg, and inves-
tigate how the residuals depend on Cpg. This is shown in the scatter plot of Fig. 4. The
dashed line in that plot is a simple linear regression. However, that procedure assumes that
any noise is entirely in the dependent variable (d) and there is none in the independent
quantity (i.e., 0,,=0)). When that assumption doesn’t hold, i.e., when there is random
variation in both quantities, then a different procedure must be used, the so-called Deming

regression.

3 While I am confident in this assumption, it is clearly speculation on my part. In any case, let’s see where
it leads.
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To utilize this procedure requires knowledge of the ratio r = o,,/04, which is not a priori
known. Indeed, it is exactly what we are trying to find. My approach is an iterative one.
First, I note that the rms of the Model 3 residuals is the Pythagorean sum of o, and o4
Next I assume a ratio r and perform the Deming regression to find the slope S of d-vs.-
Cpo. The rms of the residuals is the Pythagorean sum of o,, and o4. Finally, the standard
deviation of the Cpqg distribution, after multiplying by the slope S, is the Pythagorean sum
of 0y, and o,,. These three relationships can be solved to find the three quantities of interest,
from which r can be found and compared to the starting value. This process is iterated until
the final value agrees with the initial value. The results are shown in Table III.

The ball-to-ball contribution, oy, is slightly larger but generally agrees with the value
found from Model 5 (see Table II). Further, we see that the random measurement noise is
completely dominated by the distance measurement, with only nominal contribution from
the C'p measurement. Another way to see the same thing is shown by the curves in Fig. 4,
where the simple linear regression line is not all that different from the Deming regression
line, confirming that the contribution of the C'p, measurement to the noise is small compared
to that of the d measurement. A comparison between the Model 4 and 5 fits is given in
Fig. 5. They are clearly similar, although the Model 4 fit is marginally better. I am satisfied

that the question I posed has been answered.

TABLE II: Contributions to the variance in batted-ball distance for fixed exit velocity and launch
angle.

Parameter|rms (ft)|fraction

w 6.1 6.5%
Wh, Ws 20.5 | 73.8%
Chpo 5.4 5.1%

noise 9.1 14.5%
total 23.9 | 100%

4 By Pythagorean sum, I mean /o7 + o2.



TABLE III: Results from Model 5.

Contribution Parameter|rms (ft)
ball-to-ball variation in Cp oy 5.7
random measurement noise, Cp Om 3.1
random measurement noise, d 04 8.9

Actual - Fitted Distance (ft)

0.250 0275 0.300 0325 0.350 0.375

FIG. 4: Scatter and density contour plot of the Model 3 residuals vs. Cpg. The dashed line is the
result of a simple linear regression while the solid line is the result of a Deming linear regression,
as discussed in the text.

V. COMPARING Cpo FROM PITCHED AND BATTED BALL

I now come to the final item on my agenda, a comparison of C'p values for the batted
ball and the corresponding pitched ball. Care is necessary in this process, since we know
Cp depends on spin; in fact, it depends on the “transverse spin”, the component of spin
perpendicular to the velocity vector. For the batted ball, models of the ball-bat collision
show that the spin of the ball just after leaving the bat is almost completely transverse and

composed of a combination of backspin and sidespin. But that is definitely not true of the
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Model 5: Model 3 + Deming on Cpg
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FIG. 5: Plot of fitted vs. actual distance for the two different models that control for Cpg, as
indicated in each graph, with the dashed line representing equality. The top plot is from Model 4
and is identical to the bottom plot in Fig. 1. The bottom plot is the result of the Deming linear
regression of the residuals of Model 3 to Cpg. The rms deviation of the data from the fit are
indicated.

pitched ball, as my former student Charlie Young and I discussed in a recent article.> The

procedure for obtaining both the drag coefficient and the transverse spin is discussed in yet

5 In the article, the notation “active spin” is used instead of “transverse spin”.
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another unpublished article, from which the spin-independent Cp value can be obtained. A
scatter plot of the pitched-ball and batted-ball Cpq values is presented in Fig. 6. The values
are genearlly in agreement, albeit with considerable scatter (R*=0.147).

One might argue that it is better to use the pitched-ball Cpy values when analyzing
the distance data since the former is completely independent of the latter. And I agree
with that argument as a matter of principle. However, in practice that is not so feasible,
since the pitched-ball values have considerable measurement noise, in part due to the direct
measurement of C'p and in part due to the determination of the transverse spin, both of
which are measured over a relative short flight path. Indeed, when I use the pitched-ball
values in Model 4, the rms of the residuals are barely an improvement over Model 3, which

did not include Cpg as a parameter.
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FIG. 6: Scatter and density contour plot of Cpg values for the pitched and batted balls. The
solid line has zero intercept and unit slope and represents equality. The square of the Pearson
correlation coefficient, R?, is given.

VI. SUMMARY

In this article, I have re-visted the question of variation of fly ball distance, using what
I regard as an improved model applied to a much large data set. By randoming splitting

the data into two halves, I have separated the issue of training the model from that of
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testing the model. I have drilled down on the contribution of measurement noise, showing
that it is dominated by random noise on the distance measurement, with only a small
contribution from the random noise on the C'p measurement. Finally, I have shown that
the Cpg measurements on the batted ball and corresponding pitched ball are correlated, as

they should be, albeit with a lot of scatter in the data.
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