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A technique is developed to determine the direction of the spin axis for pitched
baseballs. The method utilizes the measurement of the magnitude of the spin from
Statcast and the magnitude and direction of the spin-induced deflection from the

ball trajectory.

I. A QUICK REVIEW OF BASEBALL TRAJECTORIES

When a baseball travels through the air, it experiences various forces that determine
the trajectory. The most familiar of these forces is the downward pull of gravity Fg. Less
familiar are the aerodynamic forces, namely the drag force Fp and the Magnus force Fjy;.
The drag force, or in everyday language “air resistance,” is due to the fact that the ball has
to push the air out of the way. Rather than talk about the forces, it is more convenient to
talk about the accelerations, since those are actually measured by the tracking systems; they
are related to the forces by Newton’s famous Third Law F' = ma. The conventional way to

express the drag acceleration ap is through the expression
EiD = —KCDU2@, (1)
where the factor K is given by
1pA
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where m and A are the mass and cross sectional area of the ball, respectively, and p is the
density of the air. The direction of the drag is —o, which is a unit vector pointing opposite
to the direction of the velocity. Thus the drag reduces the speed of the ball but does not
change its direction. The factor C'p is called the drag coefficient. If the baseball is spinning,



it also experiences the Magnus acceleration a,;, which is conventionally written as

>
>

6M = KCL’U2 — x A|, (3>
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where C', is called the lift coefficient. The direction of the Magnus force is given by the
vector cross product (w x ©), which is perpendicular both to the velocity vector and the spin
axis, the latter indicated by the unit vector w. A handy mnemonic is that the Magnus force
is in the direction that the leading edge of the ball is turning. Note that the cross product
vanishes when the spin is either parallel or antiparallel to the direction of the velocity, so that
component of spin does not contribute to the Magnus force. The component of spin perpen-
dicular to the velocity contributes to the Magnus force, which deflects the trajectory from a
straight line path but does not change the speed. Of course, the gravitational acceleration
g changes both the speed and the direction of the ball.

In the following sections, it will be assumed that the pitched ball trajectory is parame-
terized by the so-called “nine-parameter” fit to a constant-acceleration model. Although an
approximation, such a description has been shown to be an excellent description of the full
trajectory It does not matter which of the two tracking systems are used to obtain the tra-
jectory (PITCHf/x or Trackman). Note that since the start of the 2017 season, the Statcast
data exclusively uses Trackman for pitch tracking. The PITCHf/x coordinate system will
be used in which the origin is located at the corner of home plate, the y axis runs toward
the pitcher, the z axis points vertically upward, and the z axis points to the catcher’s right

(z = g x 2). Therefore a pitched baseball is primarily moving in the —g direction.

II. THE TECHNIQUE
A. The transverse and gyro components of spin

According to Eq. 3] the Magnus acceleration is only sensitive to the component of spin
that is perpendicular to (or transverse to) the velocity. We call this part the “transverse
spin” and denote it by Wr. As mentioned above, the Magnus acceleration is not sensitive to
any component of spin that is along the velocity direction. We call this part the “gyrospin”?

and denote it by Wg. The total spin & is the vector sum of the transverse and gyrospin parts:



W = W + Wg. Since the transverse and gyrospin parts are perpendicular to each other, then
wg = yJw? — wh, (4)

where I have purposely rearranged the order since the right-hand side of the equation now
contain measurable quantities. Namely, w is determined by the Trackman measurement
system while wy is determined by the trajectory. Eq. 4] then tells us how to compute the
magnitude of Jg. By definition, the direction of &g is either parallel or antiparallel to (),
and this method does not distinguish those two possibilities. One might guess, however, that
we is parallel or antiparallel to (v) for right-handed and left-handed pitchers, respectively.

We next outline how to determine &y from the tracking data.

B. Determining the Magnus acceleration

The first step in determining & from the tracking data is to isolate the part of the
acceleration that is due to the Magnus force. The 9-parameter constant acceleration fit to

the data is utilized, where the acceleration vector @ = (a,, a,, a,) is given by

—

a=dp +ay +4 (5)

and the downward gravitational acceleration § = —gZz. We first remove the gravitational
acceleration to obtain ¢* = @ — § = dp + @y which has the remaining drag and Magnus
parts. We next remove the drag. That part is a bit tricky since the drag depends on the
square of the velocity, which is not constant. The approximation adopted here is that the
appropriate velocity to use in Eq. [1]is the mean velocity (U) over the trajectory. The drag
acceleration is simply the projection of a* along the — () direction. This follows from the
fact that the Magnus acceleration has no component along that direction whereas the drag
is entirely along that direction. Therefore the drag is given by @p = — [a* - (8)] (0). As
a byproduct, one can easily obtain the drag coefficient from Eq. , Cp = ap/(K{v)?),
although that is not essential to the problem at hand. Once the drag has been removed, the

remaining acceleration is due entirely to the Magnus force. Putting all of this together, the

Magnus acceleration is related to the total acceleration by

—

M =a— g+ [(@—g) (0)](0). (6)



C. Determining the transverse spin from the Magnus acceleration

Once the Magnus acceleration is determined from Eq. [} it’s magnitude can be inserted
into Eq. [3, which can then be rearranged to find the lift coefficient C:

Ch = e (7)

There is no first-principles theory that relates C'; to the transverse spin, so it must be done
experimentally. The experiments that have been done fire a spinning baseball and track
it with high-speed video, which is used to measure both the trajectory (which determines
Cp) and the spin. A number of such experiments have been done in the past decade® and
a summary of the results is presented in Fig. [ The C} values determined from these

experiments are fitted to a smooth curve given by (updated, May 24-25 2020)
Cp = A[l — exp(—BS)] (8)

where S = rwy/(v) is the so-called spin factor, r is the radius of the ball, A=0.336 and
B=6.041. Eq. [§]is easily inverted to find wy:

e (A 0

Eq. [0 gives us the magnitude of wr; the direction is determined by a rearrangement of Eq.

to obtain

C:)T = <1A)> X &M, (10)

where ay; is the direction of the Magnus acceleration. It is important to keep in mind that
the actual experimental data scatter about the smooth curve (see Fig.[1]), so that the values

of wr are probably not determined to better than £20%.

D. Putting it all together

We now have everything we need to find the direction of the total spin. The TrackMan

system determines w. The trajectory determines both the magnitude and direction of &r
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FIG. 1: updated May 24, 2020 Experimental values of Cy, as a function of the spin factor S = rwr/v.
The data come from motion capture experiments taken at speeds in the range 80-100 mph, including data
from Alaways®® (closed points) and Nathan (open points)® Other data from pitch-tracking experiments®”
have not been included due to their large scatter. Also not included are wind tunnel data,®? which were
unfortunately taken at speeds too low to be useful in the present analysis. The data were parametrized by
the function C, = A(1 — e~ 59), with A and B determined from a non-linear least-squares fit (black curve),
with A=0.336 and B=6.041.

via Eqgs. [9] and [I0] respectively. Then Eq. [ is used to calculate the magnitude of &g, the

direction of which is +(9). In component form, we write

We = Wre + Ve
Wy = Wry + Wey
Wy, = Wrz + W@,z (11)

where everything on the right-hand side of Eq. is known. Thus the components of &
are all determined and the direction can be calculated. In doing so, it is helpful to define
a pair of angles. First, 6 is the angle of the spin with respect to the x — z plane, so that
f ~ 0° for the case where the spin is all transverse, whereas 6 ~ 90° for a “gyroball”. In
fact, cos(f) ~ wr/w, which is just the ratio of “useful” to total spin. Second, ¢ is the angle

with respect to the x axis of the projection of the spin in the x — z plane. In terms of the



components, the angles are given as follows:

0 = arctan | ——t
Vw2 + w?
¢ = arctan (&> : (12)

Wy

This completes the determination of the direction of the total spin vector.

E. Relationship of spin to movement

NOTE: This section added on May 24-25, 2020

While Eq. |8 may be useful for physicists, it is not very useful for baseball analysts. In
this section, I will develop a equation more suitable for the latter by relating movement to
rotations.

Given the components of the Magnus acceleration, Eq. [6] the corresponding movement
M is determined by the basic physics equation for constant acceleration,

- 1

where ¢ is the flight time. Using Eq. [3], this can be cast in the form
1
M = §K0L<v2>t2, (14)

where M is the magnitude of the movement. However, (v?)¢? is just the total distance D1

from release to the front of home plate, so that we arrive at the simple equation
1
M = §K(JLD2. (15)

Note that Cp is a function of the spin factor S = erw/v, where € = wy/w is commonly
referred to as the spin efficiency. Multiplying numerator and denominator by the flight time
t, we find

S = enrR/D, (16)

where R = wt/(27) is the total number of rotations of the ball during flight. We can now
combine Egs. [§ and to find a relationship between movement M and rotations R. We

arrive at

M = %KDQA [1 — exp (—2mre BR/D))] (17)



This is the desired expression relating movement M to rotations R. Note that M depends
on air density through the factor K, Eq.[2l Moreover both M and R depend on the release
extension, which determines the distantce D. For the purposes of making universal plots
of M vs. R, it would probably be useful to normalize M and R to fixed values of K and
D. Note also that the spin efficiency € appears on the right-hand-side, as one might expect.
Setting € to its maximum value of 1 establishes a universal upper limit for the amount of

movement M for a given number of rotations R. An numerical example is given in Fig.
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FIG. 2: Movement vs. Rotations calculated from Eq. The calculation assumed a release point of 55 ft
(D=53.58 ft) and K = 5.356 x 1073 ft~!, appropriate for a temperature of 70°, pressure of 29.92 inches,
50% relative humidity, and sea level. Since the spin efficiency was assumed to be 1, the curve is the upper

limit of movement for a given number of rotations with the specified D and K.

One interesting feature of Eq.[15]is that for fixed values of D, K, and C,, M is independent
of the release velocity. A very convenient way to rewrite S is as follows:

S = 9.0 x 1073 [f} , (18)

v

where the total spin rate w is in rpm and the velocity v is in mph. The ratio in brackets is
sometimes called “Bauer units”. Rephrasing my previous statement, for given D, K, and e,

movement is directly proportional to Bauer units but otherwise independent of velocity.



F. Some caveats

NOTE: This section was updated on March 31, 2015 and again on May 24-25,
2020

There are two major caveats to keep in mind when using this formalism. First, when
comparing wy, which is extracted from the trajectory data, to the total spin w, it is important
to keep in mind the role played by random measurement errors. For example, suppose one
were to compare wr with w for a large collection of four-seam fastballs, for which one expects
the two quantities will be equal. One would likely find that, on average, wr = w, as expected.
However one would also likely find a considerable spread in the distribution about the mean
value, with as many pitches with wy —w > 0 (a physical impossibility) as with wr —w < 0.
How does one account for the spread in these values? It is almost surely due to random
measurement error in the pitch trajectory. The latter results in random measurement error
in the accelerations, which in turn leads to random measurement error in wy. It could also
be the case that there is a significant random error in the total spin w. However a careful
study comparing the spin measured by Trackman to spin directly measured using high-speed
video shows that possibility to be very unlikely.*4 The role of random measurement error in
this type of analysis was discussed in a recent article*

An interesting exercise is to use Eq. [17] to estimate how a given uncertainty in M affects

the determination of wy. Omitting all the details, one can show

Z“’WT = 0.61vpe% (19)
where vg is the release velocity in mph and the LHS has the units of rpm/inch. Putting
in representative numbers for four-seam fastballs, we obtain around 150 rpm/inch, meaning
1 inch of noise on the measurement of the movement leads to 150 rpm of noise on the
measurement of wy.

The second caveat is that there is a growing body of evidence!* that mechanisms other
than the Magnus force lead to movement on a pitch, particularly forces associated with the
flow of air over the seams. While one can still use Trackman data to determine the movement

on a pitch, it would not be appropriate to interpret that movement in terms of transverse

spin, at least to the extent that these other forces are significant.



III. THE EXCEL SPREADSHEET

NOTE: This is the section that was updated on August 31, 2018

In this section I will relate the specific calculations in the accompanying Excel
spreadsheet?® to the formulas in this document. It is important to read the “Readme”
tab on the spreadsheet before using it, as it contains important information on the input
parameters. I will discuss this briefly here, referring to specific columns of the spreadsheet.

All of the columns of the spreadsheet that I have added are highlighted in yellow; the
original columns from Statcast are not highlighted. The important columns of original data

are as follows:

The x and z locations at release, columns H and J

The extenstion, column X

The total spin rate, column W

The velocity components from the 9P fit at y = 50 ft, columns Q-S
e The mean acceleration components from the 9P fit, columns T-V

None of the remaining columns of original data are needed (and, in fact, could be deleted).

The extension is used to calculate the release point yg, column I. The 9P velocity com-
ponents are at y = 50 and need to be calculated at yg, and this is done in columns D-F.
The components of the average velocity vector (v) are in Z-AB. The three components and
magnitude of the Magnus acceleration are in AF-AH and AI, respectively; the x and z move-
ments are in AJ-AK; and C}, is in AL. Although not essential in the present context, the
drag coefficient C'p is calculated in AE. The components of transverse spin W are in AO-AQ),
while the magnitude wy is in AN. The ratio of transverse to total spin (“spin efficiency”)
is in column AT, and the angles 6§ and ¢ are in AU and AS, respectively. Whenever the
calculated transverse spin exceeds the total spin, a physical impossibility, the angle 0 is left
blank.

Note that to calculate the transverse spin requires knowledge of the numerical factor
K (see Eq. [7]), which depends on the air density. In turn the air density depends on the

temperature and elevation above sea level. The calculation is done in tab K, where the
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temperature in Fahrenheit should be entered into cell B3 and the elevation in feet into cell

B4. The factor K is automatically computed in D3.

IV. A VISUAL TOOL

If the baseball were oriented so that the spin axis passes through a seam, the batter
would observe a red dot. That turns out to be an excellent way to visualize the orientation
of the spin axis. In Fig. [3| the ball is represented by a circle of unit radius, as seen by
the catcher looking along the y axis, with the 2 axis pointing to the right and the Z axis
pointing up. The distance of the spin axis from the center of the circle is given by 1 —sin(6),
whereas ¢ gives the orientation of the dot about a circumference at that radius. Seven
pitches are labeled on the plot. Pitch 1 is a gyroball, with the spin perfectly aligned with
the y axis. Pitches 2 and 3 have their axes completely in the x — z plane (i.e., no y or
gyrospin component), and correspond to the transverse spin being purely backspin and
topspin, respectively. Pitches 4 and 5 have a small gyrospin component and correspond to a
tailing fastball (armside break) thrown by left-handed and right-handed pitcher, respectively.
Pitch 6 has a small gyrospin component and corresponds to a curveball thrown by a right-
handed pitcher. Finally pitch 7 has a large gyrospin component, with the transverse spin
being purely sidespin and corresponds to a slider thrown by a right-handed pitcher.

The direction of the break can be determined from the tool by making a fist with your
right hand placing it near the center of the circle. Orient your hand so that your thumb
points to the red dot. Then your fingers will point in the direction of the break, as observed
by the catcher. Alternately, you can just apply the following simple rules: pitches lying in
the upper half of the circle break to the right, those in the lower half to the left, those in the
left half break up, those in the right half break down. And of course, those in the center of
the circle do not break at all. As an example, if we apply these rules to pitch 6, we see that
it breaks down and to the right (catcher’s view), exactly as expected for a curveball thrown
by a right-handed pitcher. For a given total spin and velocity, the magnitude of the break
will be greatest the farther the dot is from the center. For example, the maximum break will
be achieved by pitches 2 and 3 and the minimum by pitch 1. Generally speaking, a slider

(7) has less break than pitches of comparable total spin, since it usually has a large gyrospin



component.
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FIG. 3: Visual representation of the spin axis, as seen by the catcher. The radial coordinate is 1 — sin(f)
and the azimuthal coordinate is the angle ¢, as defined in Eq. The numbers refer to specific pitches, as
described in the text.

Electronic address: a-nathan@illinois.edu

! http://baseball.physics.illinois.edu/MCAnalysis.pdf.

The origin of this notation is that a pitched baseball with its spin axis perfectly aligned with its
velocity is conventionally called a “gyroball.”

3 See a summary in A. M. Nathan, Am. J. Phys. 76, 119-124 (2008). A copy of the paper can be
downloaded at http://baseball.physics.illinois.edu/AJPFeb08.pdf. The data shown in
Fig. 5 of the article have been scaled up by 3% from the published values based on a reanalysis
of the air density and ball diameter.

L. W. Alaways, “Aerodynamics of the Curve Ball: An Investigation of the Effects of Angular

Velocity on Baseball Trajectories,” Ph.D. thesis, University of California, Davis (1998).
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I am ignoring the small difference between (v)? and (v?).

While the ratio of spin to speed has long been referred to as the spin factor, the recognition
that this ratio is roughly constant for a given pitcher and pitch type is more recent. Referring
to this ratio as “Bauer units” seems to have originated at Driveline Baseball, https://www.
drivelinebaseball.com/2016/11/spin-rate-what-we-know-now/.
http://www.baseballprospectus.com/article.php?articleid=23202
http://www.baseballprospectus.com/article.php?articleid=25915

Particularly noteworthy is the recent work of Professor Bart Smith, http://www.baseballaero.
com/
http://baseball.physics.illinois.edu/trackman/MovementSpinEfficiencyTemplate-v2.

x1sx.
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 http://baseball.physics.illinois.edu/trackman/MovementSpinEfficiencyTemplate-v2.xlsx
 http://baseball.physics.illinois.edu/trackman/MovementSpinEfficiencyTemplate-v2.xlsx

	A quick review of baseball trajectories
	The technique
	The transverse and gyro components of spin
	Determining the Magnus acceleration
	Determining the transverse spin from the Magnus acceleration
	Putting it all together
	Relationship of spin to movement
	Some caveats

	The Excel spreadsheet
	A visual tool
	References

