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I. INTRODUCTION

This article is the second in a series in which I discuss the new things we are learn-

ing from the Hawkeye pitch-tracking system. In the first article,1 hereafter referred to as

I, the formalism was developed for using the constant acceleration parametrization of the

trajectory (9P) along with the Cartesian spin components, ωx, ωy, and ωz, to separate the

transverse acceleration (and therefore the movement) into Magnus and non-Magnus compo-

nents. To achieve this, one first finds the transverse acceleration, which is the component of

the acceleration (with gravity removed) in the direction perpendicular to the velocity and

which determines the movement. One expresses the transverse acceleration as the vector

sum of Magnus and non-Magnus components. The essential idea is that if the Magnus com-

ponent is known, then the non-Magnus component can be determined. The drawback of this

formalism is that the separation can only be done if the magnitude of the Magnus component

is known.

In this installment, the formalism is developed further based on an idea from Glenn

Healey.2 Recall that the transverse acceleration is given by1

~aT = ~a − ~g + [(~a− ~g) · 〈v̂〉] 〈v̂〉 . (1)

Whereas the previous formalism separated the transverse acceleration (T) into Magnus (M)

and non-Magnus (N) components,

~aT = ~aM + ~aN , (2)

the new formalism separates T into “lift” (L) and ”side” (S) components,

~aT = ~aL + ~aS , (3)
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with ~aL and ~aS mutually perpendicular (i.e., ~aL · ~aS=0) . The lift component is in same

direction as the Magnus force, i.e., in the (ω̂ × v̂) direction, whereas the side component is in

the ±v̂×(ω̂ × v̂) direction. As we shall see in the next section, this method of separation has

the advantage that it can be done exactly, using the spin components but without previous

knowledge of the lift coefficient. But that advantage comes at a cost, which will also be

discussed.

II. SEPARATING INTO LIFT AND SIDE COMPONENTS

The relationship among the three vectors in Eq. 3 is shown in Fig. 1, in the plane per-

pendicular to the mean velocity vector. Since the magnitude and direction of the transverse

acceleration (T) is known, together with the direction of the lift vector (L), the entire right

triangle is completely determined:

~aL = |~aT | cos θTL

[
ω̂ × v̂
|ω̂ × v̂|

]
= |~aT | cos θTL

[
ω̂ × v̂
| sin θ|

]
, (4)

and

~aS = |~aT | sin θTL

[
±v̂ × (ω̂ × v̂)

|v̂ × (ω̂ × v̂) |

]
= |~aT | sin θTL

[
±v̂ × (ω̂ × v̂)

| sin θ|

]
, (5)

where cos θTL = âT · âL, the terms in brackets are the direction unit vectors, | sin θ| is the

spin efficiency, and θ is the angle between the spin and velocity vectors. In the limit of unit

spin efficiency (ω̂ · v̂=0 and | sin θ|=1 ), the direction of ~aS reduces to ±ω̂. The sign in Eq. 5

is the same as the sign of ŷ · (âT × âL).

It is useful to express the spin vector in spherical coordinates as follows:

ωx = ω sin Θ cos Φ ωy = ω cos Θ ωz = ω sin Θ sin Φ , (6)

where the polar angle Θ is the angle of the spin with respect to the y axis and the azimuthal

angle Φ is the angle of the projection of the spin in the xz plane with respect to the x axis.

While the total spin rate ω and the azimuthal angle Φ are publicly available, the polar angle

Θ is not. For many pitches, ωy is small so that Θ is close to 90◦.

As before, the transverse acceleration determines the movement:

MT,x =
1

2
aT,xt

2 MT,z =
1

2
aT,zt

2 MT =
√
M2

T,x +M2
T,z φT = arctan

(
MT,z

MT,x

)
, (7)
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where t is the flight time from release to the front of home plate, MT is the total movement,

and φT is the direction of the movement in the xz plane. Similar equations hold separately

for the movement due to the lift and side forces; in Eq. 7, simply replace T by either L or S.

As a result, Eqs. 4–7 are completely sufficient for determining the lift and side contributions

to the x and z movements.

However for a pitched baseball, it is always true that the ball travels primarily in the

-y direction, so that |vy| � |vx|, |vz|. Under these circumstances, the equations can be

manipulated to find the following very simple expressions for the lift and side movements:

ML,x ≈ MT cos (φT − φL) cosφL ML,z ≈ MT cos (φT − φL) sinφL , (8)

and

MS,x ≈ ±MT sin (φT − φL) sinφL MS,z ≈ ∓MT sin (φT − φL) cosφL , (9)

where φL is the direction of the Magnus force in the xz plane:

φL = arctan

(
ωxvy − ωyvx
ωyvz − ωzvy

)
. (10)

In Eq. 9, the upper/lower sign applies if ŷ · (âT × âL) is postive/negative. It is very simple

to confirm that

MT,x = ML,x +MS,x MT,z = ML,z +MS,z , (11)

as must be the case. Using a broad range of simulated pitches representative of those thrown

by MLB pitchers, I have confirmed that the movements calculated from Eqs. 8–9 differ from

the exact movement by no more than ±0.1 inches.



4

FIG. 1: Separation of the transverse acceleration T into mutually perpendicular lift (L) and side (S)

components in the plane perpendicular to the mean velocity vector, where θTL is the angle between the

transverse and lift vectors.

III. APPROXIMATIONS

The only term in Eqs. 8–9 that depends on knowledge of the spin components is the

Magnus movement direction φL, through Eq. 10. An appealing approximation is to neglect

the terms involving vx and vz in Eq. 10, resulting in

φL ≈ − arctan (ωx/ωz) , (12)

which is identical to Φ in Eq. 6 and publicly available, allowing calculations of the lift and side

contributions to the movement without full knowledge of the spin components. In effect, this

approximation is equivalent to setting Θ=90circ. In fact, this very approximation was used

in the analysis of Smith, et al.3 to demonstrate that the direction of the actual movement

(φT ) does not always coincide with the direction of movement inferred from the Magnus force

(φL). Simulations similar to those discussed above show that for spin efficiencies exceeding

∼0.7, this approximation can lead to discrepancies in movement of up to ∼ ±1 inch. For

smaller spin efficiencies, the discrepancies can be much larger. The bottom line is that, while

the approximation is useful and appealing, it should be used with caution.

An alternative procedure for obtaining the separation of the movement into lift and side



5

components using only publicly available data is that used by Healey.2 As a reminder, those

data include the 9P parametrization of the trajectory, the total spin ω, and the azimuthal

spin angle Φ. The argument involves two key assumptions:

• The lift component is entirely due to Magnus

• The magnitude of the Magnus component is known exactly from ω and the spin

efficiency4

In effect, for a given pitch there is a unique spin polar angle Θ such that the movement

due to the lift is equal to that expected from Magnus. Having obtained that angle, the spin

vector is completely determined and the separation can be done exactly. It is an innovative

technique. It will be interesting to see how well other quantities that are derived from this

process (e.g., the spin efficiency) compare with those obtained directly from the spin vector.

IV. LIFT, SIDE, AND MAGNUS COEFFICIENTS

Although not necessary, it is sometimes convenient to characterize the magnitude of the

transverse, lift, and side forces by transverse, lift and, side coefficients, respectively:

CT =
|~aT |
K〈v2〉

CL = CT cos θTL CS = CT sin θTL , (13)

where

CT =
√
C2

L + C2
S . (14)

The factor K is given by

K =
1

2

ρA

m
, (15)

where m and A are the mass and cross sectional area of the ball, respectively, and ρ is

the density of the air. Both CL and CS can be determined from the preceding formulas.

However, it is important to keep in mind that CL need not be identical to the corresponding

coefficient for the Magnus force, the force that depends on the spin. To avoid confusion, I

will refer to the Magnus lift coefficient as CLM , which is the quantity that is related to the

spin factor S = Rω/v and measured in the laboratory experiments shown in Fig. 1 of I. The

difference CL−CLM ≡ CLN is a measure of the contribution of non-Magnus forces to the lift.

So while it is true that all of CS is due to non-Magnus forces, some of CL may also be due

to non-Magnus forces. Without independent knowledge of CLM , we simply do not know.
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V. AN EXAMPLE USING PSEUDO-DATA

An example of how to apply this formalism to real analysis is given in Fig. 2. The

example utilizes the publicly available data for Alex Cobb’s sinker, the mean parameters

of which are given in Table I. The calculations utilize the approximation in Eq. 12. With

those assumptions, the preceding formulas are used to calculate the total, lift, and side

contributions to the movement. The pitch-by-pitch results are shown in the figure. Note

that in this example, the net effect of the side force is to increase the total movement by

∼ 6% and to shift the direction by ∼ 18◦ toward more arm-side and less upward. The side

force is perpendicular to the lift force.

There is a curious feature in the data that deserves some explanation. It appears that the

side contribution to the movement (red points) lies in a very narrow angular band compared

to that of the lift and total movement. That is simply an illusion due to the fact that the

magnitude of the side movement is small. In fact, one can see from the plot that the spread

of red points gets larger as the magnitude of the side lift gets larger. Indeed, the data show

that the standard deviation of the side movement angle is essentially identical to that of the

lift movement angle.

TABLE I: Mean parameters of Alex Cobb’s sinker.

ω S φT φL φS MT ML MS

(rpm) (deg) (deg) (deg) (inch) (inch) (inch)

2071 0.195 141.6 123.8 213.7 20.8 19.7 6.3
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FIG. 2: Movement in the xz plane, shown from the catcher perspective, for Alex Cobb’s sinker. The green,

blue, and red clusters are the total, lift, and side movements, respectively, while the black dot is the mean

value of each cluster. The arrows are lines connecting the mean values and show the vector nature of their

mutual relationship.

VI. SUMMARY AND OPEN QUESTIONS

The revised formalism discussed here allows us to do a unique separation of the pitch

movement into components parallel to (lift) and perpendicular to (side) the direction of the

Magnus force, independent of the size of CLM . While approximation methods exist, to do a

proper separation requires knowledge of the full 3D spin components.

One important open question is the separation of the lift component into Magnus and

non-Magnus components. Better information on the relationship between the Magnus lift

coefficient and spin (both magnitude and direction) will allow us to do that separation. It is

hoped that such information will soon be forthcoming from careful analysis of Statcast data.

Another open question is the relationship between the non-Magnus movement, whether

side or lift, and seam orientation. In principle, the same Hawkeye cameras that measure spin
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rate and spin axis should be able to provide information on seam orientation. Our ability to

address this question must await the release of such data.
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