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A new method is proposed for calculating the pfxx and pfxz parameters in the PITCHf/x tracking
system.

I. INTRODUCTION

The PITCHf/x system uses two cameras to track pitches between pitcher and batter, determining the
coordinates of the ball at 1/60-sec intervals. The resulting trajectory x(t),y(t),z(t) (t is the time) is fit it
to a nine-parameter (or “9P”) fit corresponding to constant acceleration in each of the three dimensions.
All quantities reported in the PITCHf/x data base, such as the pitch speed, the location of the pitch as it
crosses the plate, the ”break” of the pitch, etc., are derived from the fitted trajectory rather than from the
original data. The nine parameters are the three initial positions x0, y0, and z0; the three initial velocities
vx0, vy0, vz0; and the three accelerations ax, ay, and az. Here the coordinates refer to the usual PITCHf/x
coordinate system, where the origin is at the point of home plate, ŷ points towards the pitcher, ẑ points
vertically upward, and x̂ = ŷ× ẑ (i.e., the x axis points to the catcher’s right). The 9P fit is an approximation
to the actual equations of motion,

ẍ = −KCDvvx − KCLvvy sin φ

ÿ = −KCDvvy + KCLv (vx sin φ− vz cos φ)
z̈ = −KCDvvz + KCLvvy cos φ − g . (1)

Here g is the acceleration due to gravity (32.174 ft/s2), CD and CL are the drag and lift coefficients,
respectively, and K = 5.44×10−3 ft−1 is a numerical factor.[1] In these expressions, the spin axis is assumed
to lie in the x− z plane and makes an angle φ with the x axis, with a sign such that φ = 90◦ corresponds to
the spin pointing upward, along the z axis. Noting that vy is negative, it is easy to see that the Magnus force
makes an angle θ = φ− 90◦ with the x axis. Therefore φ = 0◦ (topspin) results in a downward acceleration,
and φ = 90◦ (sidespin) results in an acceleration to the catcher’s right, exactly as expected.

Two quantities calculated by PITCHf/x are pfxx and pfxz, the deviation of the pitch trajectory in the
x and z directions from that expected in the absence of the Magnus force, as measured between y=40 ft
and the front edge of home plate, y=1.417 ft. The exact way to calculate these quantities is to compare the
actual trajectory with that computed by solving the equations of motion, Eqs. 1, with CL=0. The PITCHf/x
system uses an approximate method given by the prescription

pfxx =
1
2
axM t240

pfxz =
1
2
azM t240 , (2)

where t40 is the time of flight between y = 40 and y = 1.417 ft and the accelerations due to the Magnus
force, axM and azM , are given by

axM = ax

azM = az + g . (3)

This prescription assumes that ax and az + g are due entirely to the Magnus force. An inspection of Eq. 1
shows that this is a good approximation to the extent that the drag-related terms (i.e., those proportional
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to CD) can be neglected in the expressions for the x and z accelerations. In this brief note, an alternate
approximate prescription for pfxx and pfxz is proposed, then compared to the earlier prescription as well
as to an exact calculation for a large selection of actual pitches.

II. ALTERNATE TECHNIQUE

The alternate technique uses an expression identical to Eq. 2 but with accelerations axM and azM modified
to approximately remove the effects of drag as follows:

axM = ax − ay
< vx >

< vy >

azM = az − ay
< vz >

< vy >
+ g , (4)

where the brackets indicate the time average over the full trajectory. The rationale behind this improved
approximation is found in Eq. 1, where it is observed that the contribution of the drag to each component
of the instantaneous acceleration is directly proportional to that component of the instantaneous velocity.
The y component of the drag acceleration is approximated by ay, an approximation that is expected to be
quite good since |vx/vy| ¿ 1 and |vz/vy| ¿ 1. To get the time-averaged drag, the time-averaged velocities
are needed and calculated using straightforward kinematics. First vyf , the y component of velocity at
yf = 1.417 ft is calculated. Then the total flight time T is calculated. Then ax and az are used to calculate
vxf and vzf . Finally, the initial and final velocities are used to calculate the time-averaged values. The
particular sequence of equations is as follows:

vyf = −
√

v2
y0 + 2ay(yf − y0)

T =
vyf − vy0

ay

vxf = vx0 + axT

vzf = vz0 + azT , (5)

and

< vx >= (vxf + vx0)/2 (6)

and similarly for < vy > and < vz >. As an aside, it is noted that the angle φ can be found approximately
from

φ = arctan
(

azM

axM

)
+ 90◦ . (7)

III. COMPARING THE TWO TECHNIQUES

To facilite the notation, the quantities ∆x and ∆z are defined to be the difference between the new and
old values of pfxx and pfxz, respectively. Also pfx is defined as

√
pfx2

x + pfx2
z. The results of the analysis

are shown in Fig. 1, where nearly 8000 pitches from games played in Toronto during the period April-June,
2007 are analyzed. The ∆z plot shows a consistent systematic difference between the two techniques which
is easily understood. Since the ball always follows a downward trajectory, the z component of drag is always
upward (positive). Using the old system of calculating pfxz, the upward drag produces a deflection which is
systematically more positive than the exact value. That is, ∆z (new value minus old value) is systematically
negative. The effect on the x coordinate depends on the direction of the x velocity, and the two plots show a
systematic shift of pfxx in the positive direction (for a negative vx0) or the negative direction (for a positive
vx0), with the reasoning being exactly the same as for the z deflection. The final plot shows the correlation
between the total deflection pfx and the inferred value of the lift coefficient CL for these trajectories, the
latter calculated by doing a non-linear least-squares fit to the smoothed trajectories using the full equations



of motion. Note that pfx should be linearly proportional to CL and independent of the initial velocity.
This latter point can be seen from Eq. 2, since the Magnus accleration is proportional to v2 but the time
is proportional to 1/v. The figure shows that the values pfx calculated with Eq. 4 are perfectly correlated
with CL, indicating the method is a very good approximation to the exact solution. Indeed, the red curve
is a nearly perfect straight line passing through the origin. On the other hand, the values calculated using
Eq. 3 are less well correlated, as indicated by the scatter in the values.

[1] The constant K scales with air density. The value given assumes normal temperature and pressure.
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FIG. 1: (left) Plots of 7785 pitches from the Toronto PITCHf/x data. The upper row is a plot of ∆x for vx0 > 0
(left) and vx0 < 0 (right). The lower left plot is ∆z. The lower right plot shows the correlation between pfx and CL,
with the blue points and red points calculated using the prescriptions of Eq. 3 and Eq. 4, respectively.


