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A review is presented of the importance of the moment of inertia (MOI) to

the performance of a sporting instrument. It is shown that for a given

coefficient of restitution (COR), both the intrinsic power and the swing speed

of a tennis racquet or baseball bat correlate strongly with the MOI about an

axis through the handle and only weakly with the mass. It is further shown

that for non-wood baseball bats approved for use in college baseball in the

USA, batted ball speed is a stronger function of COR than of MOI. When

comparing two implements with the same MOI, the primary factor affecting

performance is the COR, which can be enhanced by means of the trampoline

effect. A new method of matching the MOI of a set of golf clubs is also

described. r 2009 John Wiley and Sons Asia Pte Ltd

1. INTRODUCTION

The physics of sporting implements has been considered in

journal articles [1–4] and in several books on the subject [5–9].

There is one particular aspect that has not received as much

attention as it deserves, despite the fact that it is foremost on

the minds of many players. That is, how does the performance

of a sporting implement depend on its physical properties?

A common view is that heavy implements are more powerful

than light instruments. Moreover, heavy instruments cannot

be swung as fast as light instruments. Both statements are

technically incorrect. Most implements used in any particular

sport tend to be similar in weight, in which case the common

view can be both misleading and of no help when comparing

implements of the same weight. The primary factor determin-

ing both power and swing speed, regardless of the mass of the

implement, is its moment of inertia (MOI). In this review, it is

shown why this is the case, giving specific examples from

baseball, tennis, and golf.

The MOI of a sporting implement is not as well-defined as

its mass or length since it depends on the arbitrary axis chosen

to measure it. Moreover, the chosen axis is not necessarily the

one chosen by a player to swing it. For practical convenience

and consistency, the MOI of a baseball bat is conventionally

measured by swinging the bat about an axis within the handle

located 15 cm (6 inches) from the knob end. Similarly, the MOI

of a tennis racquet is conventionally measured by swinging the

racquet about an axis in the handle located 10 cm (4 inches)

from the end of the handle. In this paper, we will denote the

conventional MOI of a bat or racquet as I15 or I10, respec-

tively, and following colloquial usage, will refer to it as the

‘swing weight’. It can be measured by swinging the implement

in a vertical plane as a physical pendulum and measuring its

period of oscillation. Together with the mass and center of

mass location, the period determines the MOI about the

pendulum axis. Alternatively, the implement can be swung in a

horizontal plane using a calibrated spring to provide a re-

storing force, in which case there is no need for any additional

measurements of the mass and center of mass location to de-

termine the swing weight.

There is an established tradition in golf that the numbered

irons in a set of clubs differ in length by increments of 1.3 cm

(0.5 inches) and that each club is matched by having the same

first moment of the mass distribution, denoted herein by S1,

relative to an axis in the handle located 35.5 cm (14 inches)

from the end of the handle [8]. The matching can be achieved

by increasing the mass of the club head in increments of

approximately 7 g (1/4 oz) to compensate for the decreasing

length of each club. It was established in the 1930s that clubs

matched in this manner feel much the same when they are
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swung and it has been that way ever since. However, a recent

innovation by some club designers has been to match the MOI

of a set of clubs, which can be achieved either by increasing the

mass of the club head in increments of approximately 8 g, or by

changing the lengths between clubs in increments of 0.95 cm

(3/8 inches). The original choice of the first-moment fulcrum,

35.5 cm from the end of the handle, was not entirely arbitrary.

It was a choice that happened to give an approximate MOI

match and one that was easier to implement in the 1930s since

it involved simple measures of mass and length rather than a

time-consuming measurement of the actual MOI of all the

clubs in a set. As a result, the MOI of a club has now become

part of the lexicon among golfers and it is conventionally

measured about an axis through the end of the handle. We will

denote this quantity as I0. We show in Section 4.3 that it is

possible to match simultaneously both the S1 and I0 of a set of

clubs simply by changing the fulcrum from 35.5 to 47.0 cm

from the handle end.1

In this paper, we address the importance of the MOI

and coefficient of restitution (COR) to the performance of a

sporting instrument. We start with a discussion of intrinsic

power and effective mass in Section 2 and its dependence on

the MOI. In Section 3, we discuss the relationship between

swing speed and MOI. We then apply these ideas to specific

examples of tennis, baseball, and golf in Section 4. A summary

is given in Section 5.

2. INTRINSIC POWER AND EFFECTIVE MASS OF AN
IMPLEMENT

A powerful bat or racquet or club can be defined as one

that projects a ball at high speed. A less powerful implement is

one that projects the ball at a lower speed, given the same

incoming ball speed. These factors can be quantified in terms

of the simple impact model shown in Figure 1. Suppose that a

ball of mass m is incident at speed v1 and is struck by an

implement of massM swung at speed V1. The implement speed

V1 is taken to be the speed at the point of impact, located at

distance b from the center of mass. If the ball is struck head on,

then it will exit back along the incident path at speed v2, and

the impact point on the bat will decrease in speed to V2 at the

end of the impact.

The collision process is complicated by the fact that

the implement is not a rigid body on the short time scale of the

collision. Energy can be transferred to the implement in the

form of transverse bending vibrations. Nevertheless, the exit

speed of the ball is governed by the same momentum

conservation laws that would apply even if the implement

were perfectly rigid. Therefore, a flexible implement can be

described as though it were a rigid body, with a reduced value

of the COR to allow for vibrational energy losses in the imple-

ment. If the impact occurs at the fundamental vibration node

point, then the fundamental vibration mode is not excited at

all, in which case the vibration energy losses in the implement

are much reduced and the primary energy loss during the

collision is the energy loss in the ball. A significant reduction in

the outgoing ball speed can arise if the ball is struck at a point

that does not coincide with the long axis of the implement,

causing the implement, the hand and the forearm to rotate and

vibrate about that axis. However, in this paper we assume that

the ball impacts along the central axis of the implement.

Because the collision with the ball takes place over a very

short time, the force F at the impact point is generally much

larger than the force applied by the player at the handle end. In

the following, we ignore the force acting at the handle end,

which is equivalent to assuming that the bat is free on the short

time scale of the collision. In that case, the implement ex-

periences both a center of mass acceleration according to the

relation F ¼MdVcm=dt, and an angular acceleration according

to the relation Fb ¼ Icm do=dt, where Icm is the MOI of the

implement about an axis through its center of mass. The im-

pact point itself accelerates according to the relation

F ¼MedV=dt, where Me is the effective mass of the impact

point. Since V ¼ Vcm þ bo, we find that:

1

Me
¼

1

M
þ

b2

Icm
: ð1Þ

Therefore, the collision between the implement and the ball

can formally be regarded as a head-on collision between a

point mass Me with incident speed V1 and a point mass m at

incident speed v1, with a COR e ¼ ðv2 � V2Þ=ðv1 þ V1Þ. If the
implement is initially at rest, then the ball will rebound with a

speed ratio given by:

eA ¼
v2

v1
¼

eMe �m

Me þm
; ð2Þ

where eA is known as the apparent COR, although it is also

known as the collision efficiency [4] or the rebound power. [8]

If the implement is swung at an incoming ball, then the out-

going ball speed is given by:

v2 ¼ ð1þ eAÞV1 þ eAv1: ð3Þ

The outgoing speed has two components, the first being

directly proportional to the swing speed of the implement and

the second representing the bounce speed of the incoming ball

off the implement. Since both components depend on the value

V
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Figure 1. Ball incident at speed v1 is struck head on by an implement

swung at speed V1 ¼ Vcm1 þ bo1. The ball exits at speed v2. The exit

speed depends on both V1 and the ‘intrinsic power’ of the implement

itself. CM denotes center of mass.

1It has become conventional in golf for swing weight to refer to the first
moment S1 rather than the second moment I0 of the mass distribution.
To avoid confusion, we will not use the term ‘swing weight’ when
referring to a golf club.
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of eA, the performance of any given implement depends on eA,

and thus, on the effective mass of the implement and the COR

at the impact point. The quantity eA can be regarded as a

measure of the intrinsic power (or the ‘inbuilt power’) of the

implement since it determines the rebound speed of the ball

when the implement is initially at rest. The performance of the

implement also depends on the speed at which it can be swung,

which will be discussed in Section 3.

After the collision, the combined effects of rotation about

the center of mass and translation of the center of mass of

the free implement during the impact will result in the rotation

of the implement about an axis located near the handle end,

at a distance x5 Icm/Mb from the center of mass, or at a

distance R5 x1b from the impact point. The impact point is

known as the center of percussion for that axis, and the axis is

known as the conjugate point. The MOI of the implement

about the axis is given by IA ¼ Icm þMx2. It is easy to show

that IA is also equal to MeR
2. In terms of the rotation induced

by the collision, the implement behaves in the same manner as

an isolated mass Me located at the end of massless rod of

length R.

The effective mass of the implement at the impact point

can therefore be expressed in the form Me ¼ IA=R2, indicating

that the intrinsic power of the implement is directly related to

its MOI about the collision-induced rotation axis near the

handle end. Given thatMe and the location of the rotation axis

both depend on three separate and independent inertial

properties of the implement (M, b, and Icm), it might appear

that the performance of any given implement should depend

on all three of these properties rather than any single para-

meter. However, the value of IA/R
2 for any given implement is

relatively insensitive to the axis chosen to measure IA and R,

since IA is proportional to R2 to a good approximation, at least

for the usual situation where a ball impacts near one end of an

implement and the implement rotates about an axis near the

other end. It is for this reason that the intrinsic power of any

given implement depends primarily on the conventional MOI

of the implement about an axis near the handle end, regardless

of the precise location of the collision-induced rotation axis.

We illustrate this point with some examples. Suppose that

the implement is a uniform rod of length L and mass M with

its center of mass in the middle of the rod and with

Icm ¼ML2=12. Such an implement is a good approximation to

a tennis racquet, as discussed more fully in Section 4.1. If the

impact occurs at a distance d from one end, then b5L/2�d,
and the effective mass at the impact point is given by:

Me ¼
M

1þ 3ð1� 2d=LÞ2
: ð4Þ

For an impact at the center of the rod, Me 5M, while

Me 5M/4 for an impact at the tip of the rod. Now suppose

that we choose to evaluate IA about an arbitrary axis located

at a distance A from the handle end of the rod, or a distance

L/2�A from the center of the rod, and a distance R5L�A�d
from the impact point. For this axis, IA ¼ML2=12þ
MðL=2� AÞ2. The quantity IA/R

2 can be taken as an

approximate estimate of Me and is compared with the actual

value ofMe in Figure 2 for two different values of A. If the axis

is chosen at A/L5 0.1, then the estimated value ofMe is within

2% of the actual value of Me for all impacts in the range

0.22od/Lo0.35. If the axis is chosen at A/L5 0.2, then the

estimated value of Me is within 2% of the actual value of Me

for all impacts in the range 0.13od/Lo0.28.

A similar result is obtained if the implement has a light

handle and a heavy head, as is the case for a golf club or

baseball bat, although a more realistic example for a bat will

be given in Section 4.2. Consider a club of total massM having

a head of zero extent and mass Mh located at the end of a

uniform shaft of length L and mass m. The center of mass of

the club is located at a distance b5m/L(2M) from the head,

and Icm ¼ 0:25mL2=ð1=3þMh=MÞ. From Equation 1 it can be

seen that the effective mass at the head end of the club is

Me ¼Mh þm=4, equal to the mass of the head plus the ef-

fective mass of the shaft at its far end. If we measure IA about

an axis located an arbitrary distance A from the handle end or

a distance R5L�A from the head end, then Me is given ap-

proximately by IA/R
2, regardless of the chosen axis, as shown

in Figure 3. IA/R
2 is exactly equal to Me for an axis at the

conjugate point (at a distance of Icm=ðMbÞ from the center of

mass) and differs by less than 2% from Me for any other axis

located in the range 0.05oAo0.48m.

3. SWING SPEEDS

As we have seen from Equation 3, the performance of

a sporting instrument, defined as the outgoing ball speed,

depends on both the intrinsic power eA of the instrument and

the speed with which it is swung V1. We have also seen that eA
depends on the conventional MOI IA of the implement about

an axis near the handle end. It is often argued that light

instruments can be swung faster than heavy implements to

make up for their lack of intrinsic power. In this section, we

discuss briefly the results of several experiments showing that

V1 depends on the conventional MOI rather than the mass.
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Figure 2. Estimated Me=M � IA=MR2 and actual Me/M (thick curve)

vs d/L for a uniform rod of length L and mass M, when IA is measured

about an axis at distance A/L 5 0.1 (dashed curve) or 0.2 (thin curve)

from the handle end. d is the distance from the impact end to the

impact point.
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The most definitive evidence comes from an experiment by

Smith et al. [10] using a series of 16 different softball bats swung

by 20 different elite softball players. The bats were specially

constructed for the study so as to distinguish a dependence of

swing speed on mass from MOI. Therefore, 10 of the bats had

the same mass and different values of the MOI, while the other

10 had the same MOI and different mass. The results showed

that the maximum swing speed, V, for any given player de-

pended on the MOI about an axis through the handle end of

the bat, I0, according to the relation V / 1=In0 , where n5 0.25,

averaged over all players. Furthermore, swing speed was found

to be independent of bat mass when I0 was held fixed. In a

similar experiment conducted by Cross and Bower [11] using a

series of rods with a much wider range of I0 values than used in

the Smith et al. study, it was found that n5 0.2770.01, aver-

aged over four participants. The earliest experiment of this type

was probably the one conducted by Daish and described in his

1972 book [5]. Daish measured the head speed of golf clubs as a

function of head mass, finding that head speed decreases as

head mass increases for any given player performing a max-

imum effort swing. When reinterpreted in terms of MOI, the

Daish study [5] is consistent with the more recent studies, with

n5 0.26, averaged over five golfers.

An extensive study of swing speeds using baseball bats was

undertaken by Crisco and Greenwald [12]. They found that

good batters swung bats in such a way that, just before impact

with the ball, the bat swings in a circular arc centered within an

inch or two of the knob. They also found that the angular

velocity o of a bat just before impact, averaged over several

strong batters, is given by:

o ¼
31:1 rad=s

ðI0Þ
0:28

ð5Þ

with I0 in kg-m2. A similar result was found by Fleisig

et al. [13].

From a physics point of view, it is the second moment

(or MOI) rather than the first moment that determines the

resistance of an object to rotation. It is not immediately ob-

vious that the swing speed of an implement should also depend

primarily on its second moment, given that the person

swinging the implement must swing his or her relatively heavy

arms at the same time. Nevertheless, the measured swing speed

results show that this is the case. Consequently, one might

expect that the swing speed of a golf club should also depend

primarily on its MOI rather than its first moment.

We now show how the first moment S1 of a set of clubs can

be matched in such a way that I0 is also matched. Suppose that

a club has a uniform shaft of mass m and length L, with a point

mass Mh located at the far end. Then S1 about a point at

distance A from the handle end is given by:

S1 ¼ ð0:5L� AÞmþ ðL� AÞMh; ð6Þ

while I0 is given by

I0 ¼
m

3
þMh

� �
L2 ¼ L2 m

3
þ

S1 � ð0:5L� AÞm
L� A

� �
: ð7Þ

I0 does not dependent explicitly on m if A5L/4, in which case

I0 5 (4L/3)�S1. Since a set of irons is typically about 91 cm in

length, a measurement of S1 with a 23 cm fulcrum would in-

deed provide a good estimate of I0, regardless of the mass of

the shaft or the head, at least for a uniform shaft. However, I0
is proportional to the length of a club for any given S1. Con-

sequently, such a measurement is not well suited to matching

the second moment of a set of clubs, due to the small variation

in length between clubs.

If each club varies in length by an increment DL and if the

head mass is altered by DMh, then the resulting changes in S1

and I0 are given by:

DðS1Þ ¼ ðL� AÞDMh þ Mh þm�
Am

L

� �
DL ð8Þ

DI0 ¼ L2DMh þ ð2Mh þmÞLDL: ð9Þ

For any particular value of A, it is possible to match a set

of clubs so that D(S1)5 0, but DI0 will not be zero in general.

However, if A5L/2, then DI0 5 0 when D(S1)5 0. Conse-

quently, the MOI of a set of clubs can be matched by matching

the first moment about a fulcrum located halfway along the

club. This method of matching has not previously been no-

ticed. A practical example is described in Section 4.3, where it

is shown that the matching technique remains valid even if the

shaft is non-uniform, as it normally is.

4. APPLICATIONS

4.1 Tennis Racquets

A tennis racquet has an approximately uniform mass

distribution along its central axis, and therefore, behaves in a

manner similar to a uniform rod. The length of a tennis racquet

is typically about 69 cm (27 inches). The conventional MOI (or

swing weight) is measured about an axis 10 cm from the end of

the handle, so that A/L5 0.15. Since most impacts occur in the

range 0.1od/Lo0.3, the swing weight of a racquet provides a

convenient and reliable measure of its effective mass for almost

all impacts of practical interest. Denoting the swing weight by
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I10, then the effective mass at a point near the middle of the

strings, 16 cm from the tip, is given to a very good approxi-

mation by Me � I10=ðL� 26Þ2 when L is measured in centi-

meters and I10 is measured in kg-cm2. The estimated value of

Me here does not depend on the location of the center of mass

of the racquet. It depends only on the swing weight and the

distance, L�26, between the impact point and the axis chosen

to measure the swing weight. The middle of the strings is close

to the fundamental vibration node, in which case the energy

loss due to frame vibrations is negligible, and the corresponding

value of eA can be estimated directly from Equation 3 using the

known value of e for the impact of a tennis ball on the strings of

a racquet (approximately 0.85) and the estimated value of Me.

The application of these ideas to actual racquets is pre-

sented in Figure 4. Plotted are the calculated value of eA for

133 different racquets, all available for sale during 2005 and all

6970.5 cm long, for an impact 16 cm from the tip of the rac-

quet, as a function of (a) racquet mass and (b) the measured

swing weight of each racquet. The measured distance between

the end of the handle and the center of mass for all 133 rac-

quets varied from 30.5 to 37.5 cm. It is clear from these results

that the intrinsic power of a racquet at a point near the middle

of the strings depends on the swing weight of the racquet and

that the correlation with racquet mass is weak. Heavy racquets

are designed with most of the additional weight at the handle

end, while light racquets are designed by removing weight

mostly from the handle end. Weight added or removed from

the handle affects the overall weight of a racquet, but has little

effect on the MOI or on the intrinsic power of the racquet. The

MOI about an axis through the handle depends mainly on the

mass of the head, as does the effective mass at the impact

point, thus the strong correlation between racquet perfor-

mance and the measured swing weight.

4.2 Baseball Bats

For baseball bats, the MOI (or swing weight) is con-

ventionally measured about an axis on the handle of the bat a

distance 15 cm (6 inches) from the knob end and is denoted

by I15. Published values of the swing weight for a large range of

baseball and softball bats are not readily available. However, it

is easy to calculate the swing weight for a large range of bats in

terms of a simple bat model. For that purpose, a baseball bat

of length 0.84m (33 inches) was modeled as three equal length

uniform cylindrical sections, each section having a different

and progressively larger mass and diameter from the handle

end to the barrel end. The mass of each section was varied in

28 g (1 oz) increments to model a total of 556 different bats

varying in overall mass from 0.60 to 0.96 kg (21–34 oz). For

each bat, the quantitiesMe and eA were calculated at an impact

point 15 cm (6 inches) from the end of the barrel. The funda-

mental node point is typically at this location, so that vibration

losses in the bat can be ignored. Therefore, the value of the

COR e is determined primarily by losses in the ball, and varies

from approximately 0.47 to approximately 0.50 for a high-

speed collision with a wood bat, but can be significantly larger

for aluminum bats due to the trampoline effect [4]. In our

model calculations, two values of e were chosen, 0.50 and 0.55,

the former and latter appropriate for a wood and aluminum

bat, respectively.

The value of Me for all 556 bats is shown in Figure 5a as a

function of the barrel mass, demonstrating that the effective

mass of the bat at the impact point depends primarily on the

mass of the barrel section rather than the middle or handle

sections of the bat. In Figure 5b, an approximate effective

mass M�
e is plotted versus the exact value Me, where M�

e ¼
I15=R2 and R is the distance between the impact point and a

point on the handle 15 cm from the knob (R5 0.69m in our

example). As with the examples in Figures 2 and 3, M�
e is an

excellent approximation toMe over the full range of bats in the

model. As a result, we expect a strong correlation between the

intrinsic power eA and the swing weight I15, as clearly

demonstrated in Figure 5d. We expect and see no such cor-

relation with the total bat mass M (Figure 5c). The value of eA
for each bat is shown in Figure 5d for two different values of e,

showing how the trampoline effect enhances the performance

of aluminum bats. By comparison, Figure 6 shows eA for 112
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racquets all 27 inches long. Data show the strong correlation of eA with swing weight and weak correlation with mass.

Sports Technol. 2009, 0, No. 0, 1–9 r 2009 John Wiley and Sons Asia Pte Ltd www.sportstechjournal.com

Performance versus moment of inertia



actual bats that are approved for play in the USA by the

National Collegiate Athletic Association (NCAA). All the bats

have a length in the range 0.8470.01m, a weight in the range

0.84–0.88 kg (30–31 oz), and a swing weight between 0.15 and

0.20 kg-m2 (8500–11000 oz-in2). We reach the same conclusion

for these actual bats that we did for our model bats: eA is

strongly correlated with swing weight, but poorly correlated

with the actual weight.
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As discussed earlier in the context of Equation 3, the

performance of a bat (that is, batted ball speed), depends not

only on the intrinsic power eA, but also on the speed with

which the bat can be swung. We have seen that eA depends on

the swing weight. Moreover, experimental data, as summar-

ized in Equation 5, also indicate that the swing speed depends

on the swing weight. We therefore expect a dependence of bat

performance on the swing weight, a topic that we now address.

Guided by Figure 5b, we use M�
e to calculate eA. To calculate

the swing speed, we use Equation 5 along with a simple em-

pirical expression relating I0 to I15 for our model bats. We

assume a fixed value of 0.50 for the COR and three different

values of the incoming ball speed. The results of this exercise

are presented in Figure 7, where we show how the batted ball

speed depends on I15. A similar plot is shown in Figure 8 for

the 0.84m NCAA bats, where the exact value of Me and I0
were used, along with two different values for the COR.

The results in Figure 7 show that the batted ball speed

increases rapidly, levels off, then falls slowly as the swing

weight I15 is increased. This behavior is easy to understand as a

tradeoff between eA and swing speed, which depend on the

swing weight in opposite ways. A bat with a very small swing

weight, such as a broomstick, would be easy to swing, but

would have a small intrinsic power. A bat with a very large

swing weight, such as a 10 kg steel bar, would be much more

difficult to swing, but would have a larger intrinsic power. The

optimum swing weight, that is, the one producing the largest

batted ball speed, would lie somewhere between the two ex-

tremes and depends somewhat on the incoming ball speed.

Interestingly, the data in Figure 8 show that actual bats

used in amateur play tend to have a swing weight a bit smaller

than the optimum, on the rising part of the curve in Figure 7,

suggesting that batters could improve their maximum

batted ball speed by using a bat with a larger swing weight.

Judging from their selection of bats, they prefer not to do so.

Batters distinguish between bat speed and bat quickness. The

former has to do with the bat speed at the moment of the

collision. The latter has to do with the bat acceleration, which

affects the batter’s ability to control the movement of the bat

and get it into the hitting zone quickly. So while a batter can

hit a ball harder with a swing weight near the top of the curve,

he is likely to hit a ball solidly more often with a somewhat

smaller swing weight. The strong preference by batters to use a

less than optimum swing weight provides a logical explanation

for the NCAA rule that specifies a lower limit but not an upper

limit on the allowable swing weight of a bat.

It is also interesting to point out that bat control is gen-

erally not an issue for slow-pitch softball, given the very low

speed of the incoming ball. Indeed, there is anecdotal evidence

that elite slow-pitch softball players prefer bats with a larger

swing weight, a preference consistent with our findings. A re-

lated issue has to do with the illegal act of corking a baseball

bat, whereby the swing weight of a wood bat is reduced by

drilling a�2.5 cm diameter hole axially in the barrel of the bat

to a depth of about 25 cm, then backfilling the hole with a light

material, such as cork. It is often claimed by baseball aficio-

nados that the batter using a corked bat will hit the ball harder

because the increase in swing speed more than compensates for

the decrease in intrinsic power eA, leading to a larger batted

ball speed. Given that bats in use fall on the rising part of the

curve in Figure 7, our analysis leads to the opposite conclu-

sion: corking the bat leads to a lower maximum batted ball

speed. Nevertheless, corking a bat is not without value, since

the reduced swing weight allows better bat control.

The calculations in Figure 8 indicate that batted ball speed

is a much stronger function of the COR than of the swing

weight. Indeed, the performance of bats at the top of the curve

in Figure 7 would be independent of swing weight, at least over

some limited range. An inspection of Figure 8 indicates that a

10% change in e leads to a change in batted ball speed of

2.7m/s, whereas a 10% change in swing weight leads to a

change of only 0.7m/s. The weak dependence of batted ball
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speed on swing weight and strong dependence on e has recently

led the NCAA to adopt e as its metric of performance [14].

A different situation exists with tennis racquets since the strings

provide a strong trampoline effect regardless of string tension. It

was shown by Brody et al. [7] that a decrease in string tension

from 267 to 223N leads to an increase in serve speed of less than

1%. On the other hand, the change from a wood bat to a hollow

aluminum bat leads to a much larger change in e, resulting in a

much larger change in batted ball speed.

We conclude from our study that for a given pitch speed,

bat length, and impact location, baseball bat performance is

determined by only two properties of the bat: the swing weight

I15 and the COR e. In particular, the performance does not

directly depend on the total mass of the bat or the location of

either the center of mass or the center of percussion. From a

purely technological point of view, this conclusion simplifies

the job of the bat designer, since the swing weight and COR

are independently-adjustable parameters. The COR is largely

determined by the stiffness of the barrel, which determines the

size of the trampoline effect. The swing weight can be adjusted

by adding or removing weights from the barrel endcap. For

example, adding or removing 28 g (1 oz) at the endcap of a

0.84m bat changes the swing weight by 70.0133 kg-m2 with-

out affecting appreciably the COR.

4.3 Golf Clubs

In this section, we consider the problem of matching the

numbered irons in a set of clubs so that they all have the same

MOI I0. A typical set of irons consists of a number 3 iron of

length approximately 99 cm, decreasing in length by 1.3 cm

increments to a pitching wedge of length approximately 90 cm.

In a conventional set with matched first moments, the mass of

the head increases in 7 g increments from approximately 240 g

to approximately 289 g, although lighter and heavier ranges of

head weights are available to suit different players. If the shaft

were a uniform cylinder of mass approximately 110 g, then a

first moment-matched set would require an incremental head

mass of approximately 5 g rather than 7 g. However, the

handle end of the shaft is normally thicker and heavier than

the head end and includes a grip of length approximately 25 cm

and mass approximately 50 g. Table 1 shows the calculated

parameters of a matched set of clubs with a steel shaft

consisting of a uniform cylindrical handle of length 30 cm

and mass 100 g, plus a uniform cylindrical section of mass

1.15 g/cm joining the handle and the head.

Three different matching methods are shown in Table 1, all

with the same 240 g head mass for the number 3 iron. Only the

number 3 iron, the number 6 iron, and the shortest iron (the

pitching wedge) are shown in the Table. The first method is

the conventional one where the first moment is matched about

a fulcrum located 35.5 cm from the end of the handle. The first

moment is 0.155 kg-m for each iron, while the MOI about an

axis at the end of the handle, I0, decreases by 0.009 kg-m2 from

the first to the last iron. The second system is an MOI matched

set where I0 is the same for each club, but the first moment

increases by 0.006 kg-m from the first to the last iron. The third

matching system is one where the first moment is matched

about a fulcrum 47 cm from the end of the handle. In the third

case, I0 is matched closely for all clubs, while the first moment

is matched exactly. In the third system, I0 varies by only 0.15%

at most between the seven clubs in the set, the average incre-

ment in head mass being 8.7 g. The third system is almost

identical to the second in terms of the resulting head weights,

the only significant difference being that the first moment is

defined with a different fulcrum, and therefore, has a different

numerical value.

The main point of these results is not to show that one

matching system is better than another, but to show that it is

possible to match both the first and second moment of a set of

clubs, simply by choosing an appropriate axis to define each

moment. By redefining the first moment fulcrum in this way, it

is possible to match the MOI of a set of clubs to within 0.15%

using a simple measurement of club mass and center of mass

location, rather than measuring the actual MOI of each club in

the set. The method also works for lighter or heavier sets of

clubs using the same shafts, as shown in the last set of entries in

Table 1. At present, MOI matching can be achieved only by

employing a relatively expensive instrument designed specifi-

cally to measure the MOI of a club as it swings against a

calibrated spring. Consequently, MOI matching is not as

popular as perhaps it should be.

5. SUMMARY

In this paper, we have investigated the importance of the

MOI of a sporting implement for its performance. We have

shown that the intrinsic power eA of a tennis racquet, baseball

bat, or golf club is strongly correlated with the MOI of the

instrument about an axis passing through the handle and

poorly correlated with the total mass. For a tennis racquet,

both eA and the outgoing ball speed depend primarily on I10,

the MOI about an axis 10 cm from the handle end depends

only weakly on the string tension. For a baseball bat, eA
depends primarily on I15, the MOI about an axis on the bat

15 cm from the knob. For non-wood bats approved for use by

the NCAA, the batted ball speed is a stronger function of the

COR than of the MOI. For solid wood bats, it is the MOI

Table 1. Three matching methods for golf clubs. Units are kg-m for S1,

kg-m2 for I0, and cm for L and A.

Method Iron L Head Mass A S1 I0

1 3 99.1 240 35.6 0.155 0.275

1 6 92.3 260 35.6 0.155 0.271

1 PW 90.2 290 35.6 0.155 0.266

2 3 39.0 240 35.6 0.155 0.275

2 6 92.3 264 35.6 0.157 0.275

2 PW 90.2 301 35.6 0.161 0.275

3 3 99.1 240 47.0 0.107 0.275

3 6 92.3 264 47.0 0.107 0.274

3 PW 90.2 301 47.0 0.107 0.275

3 3 99.1 200 47.0 0.092 0.235

3 6 92.3 219 47.0 0.092 0.234

3 PW 90.2 250 47.0 0.092 0.235

PW, pitching wedge.
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that determines the performance since there is no significant

trampoline effect with wood bats. We have also shown that it is

possible to match simultaneously the MOI about the end of the

handle I0 and the first moment of a set of clubs by moving the

fulcrum of the first moment from the conventional 35.5–47.0 cm

from the handle. This matching method would provide players

and golf technicians with a simpler and cheaper method of MOI

matching, which is claimed by many players to result in signi-

ficantly improved results on the golf course.
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