The effect of spin on the flight of a baseball
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Measurements are presented of the Magnus force on a spinning baseball. The experiment utilizes a
pitching machine to project the baseball horizontally, a high-speed motion analysis system to
determine the initial velocity and angular velocity and to track the trajectory over 5 m of flight, and
a ruler to measure the total distance traversed. Speeds in the range v=50—110 mph and spin rates
o (topspin or backspin) in the range 1500-4500 rpm were utilized, corresponding to Reynolds
numbers of Re=(1.1-2.4) X 10° and spin factors S=Rw/v in the range 0.090-0.595. Least-squares
fits were used to extract the initial parameters of the trajectory and to determine the lift coefficients.
Comparison is made with previous measurements and parametrizations, and implications for the
effect of spin on the flight of a baseball are discussed. The lift coefficient C; is found not to depend
strongly on v at fixed values of S. © 2008 American Association of Physics Teachers.
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I. INTRODUCTION

It is well known to players, fans, and even physicists that
a spinning baseball curves. In the language of physics, a
spinning baseball in flight experiences the Magnus force,
which contributes along with gravity to the deviation of a
baseball from a straight-line trajectory. The earliest experi-
mental investigations of the Magnus force were conducted
by Isaac Newton,' who studied the motion of spinning tennis
balls. A recent review of the Magnus force on a variety of
different sports balls (baseball, tennis, golf, cricket, volley-
ball, and soccer) has been given by Mehta and Pallis.” Were
Newton alive today, he would surely know that the Magnus
force is responsible for much of the subtlety in the battle
between pitcher and batter, such as the sideways break of a
slider or cutter, the drop of a curveball with topspin, and the
“hop” of a fastball with backspin. He would also understand
that home run hitters typically undercut the baseball to put
backspin on the struck ball because they instinctively know
that the Magnus force on a ball with backspin is primarily
vertically upward, so that balls hit on a home run trajectory
stay in the air longer and travel farther.

It might surprise Newton that more than 300 years after
his initial investigations, we still do not have a completely
quantitative description of the Magnus force and its effect on
the flight of a baseball, despite the many experimental and
computational studies that have appeared in the literature.
Computational studies of the effect of sgin on the flight of hit
baseballs have been reported by Rex,” Watts and Baroni,*
and Sawicki er al.” These studies utilized models of the Mag-
nus force based on the available experimental information,
which will be reviewed in Sec. II. Additional computations
are reported in the books of Watts and Bahill® and Adair.’
Experimental data on the effect of spin on the flight of
pitched baseballs have been reported in Refs. 8—11. To our
knowledge, there are no experimental data on the effect of
spin on the flight of hit baseballs.

The most recent and extensive computational study was
reported in Refs. 5 and 12 in which the optimum bat-swing
parameters for producing the maximum range of a batted
baseball were determined. They used models for the ball-bat
collision and the aerodynamic forces on a baseball and
tracked the ball from collision to landing. For given initial
parameters of the pitch (speed, angle, and spin), the bat
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swing angle and undercut distance were varied to maximize
the range. The study found the surprising result that an opti-
mally hit curveball travels farther than an optimally hit fast-
ball, despite the higher batted-ball speed of the fastball. The
physics underlying this result is that, in general, a baseball
will travel farther if projected with backspin. It will also
travel farther if it is projected with higher speed. A fastball
will be hit with a higher speed, and a curveball will be hit
with greater backspin.13 It then becomes a question as to
which effect wins. The calculations of Ref. 5 showed that the
latter effect wins and the curveball travels farther. This con-
clusion depends critically on the magnitude of the Magnus
force on a spinning baseball. A particular model was used for
the Magnus force based largely on experimental data (see
Sec. II). This model and conclusions have been criticized by
Adair,™ who claims that the effect of spin on the flight of a
baseball was overestimated in Ref. 5.

The question of whether a curveball can be hit farther than
a fastball is not an issue of primary importance to a physicist.
The issue is the quantitative effect of spin on the flight of a
baseball, regardless of whether the trajectory is that of a long
fly ball, a popup to the infield, or a pitched baseball. The
goals of the present paper are to report new experimental
data for the Magnus force and to use these data to update and
extend the earlier investigations of the effect of spin on the
flight of pitched or batted baseballs. The present experiment,
including the data reduction and analysis, is described in Sec.
III. The results are compared to previous determinations of
the Magnus force in Sec. IV and the implications for the
flight of a baseball are discussed. A summary of our conclu-
sions is given in Sec. V.

II. PREVIOUS DETERMINATIONS
OF THE MAGNUS FORCE

When a spinning baseball travels through the atmosphere,
it experiences the force of gravity in addition to the drag and

Magnus forces, Fp and Fj;, as shown in Fig. 1. Convention-
ally the magnitudes of these forces are parametrized as

1
FD=5CDpsz, (1)
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Fig. 1. Forces on a spinning baseball in flight. The drag force F), acts in the
—v direction, the Magnus force F, acts in the @ X ¥ direction, and the force
of gravity F acts downward.

1
Fy= ECLpsz’ (2)

where A is the cross sectional area of the ball, v is its speed,
p is the air density (1.23 kg/m?), and C, and C; are the drag
and lift coefficients, respectively.15 We will focus only on C;.
Data on other spherical sports balls suggest that C; is mainly
a function of the spin factor S=Rw/v, although it may also
be a function of the Reynolds number Re=2pRuv/ ,u,.z’l Here
R is the radius of the ball, w is the angular velocity, and w is
the dynamic viscosity of the air. For a standard ball and air at
normal temperature and pressure, p=1.85X 10~ N-s/m?, so
that Re=2180v and §=8.53 X 10~3w/v with v in mph and @
in rpm.

Previous determinations of C; for a baseball are shown in
Fig. 2, along with the present data that we will discuss. The
earliest data are those of Briggs,17 in which the deflection of
a spinning baseball falling under the influence of gravity in a
horizontal wind tunnel was measured, from which F,, and
C; were determined. The data cover the range $=0.1-0.3,
with velocities in the range 45-90 mph, and were the data
used in the study by Rex.” The experiment found the surpris-
ing result that F), is proportional to wv?, implying that C; is
proportional to vS rather than to S. More recently, it was
argued that an important correction needs to be applied to the
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Fig. 2. Experimental results for C;. The closed circles are from the present
experiment. Open circles are from Watts and Ferrer (Ref. 18), open triangles
are from Briggs (Refs. 12 and 17), open diamonds and squares are from
Alaways two- and four-seam (Ref. 23), respectively (Refs. 8 and 9), and
closed triangles are from the pitching machine data of Jinji (Ref. 11). Also
shown are the parametrizations of Ref. 5 (solid) and Eq. (3) (dashed), the
latter calculated for a speed of 100 mph.
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Briggs data,"” increasing the C; values by approximately
50% and bringing them more in line with the expectation
that C;, is proportional to S .2 The corrected values are shown
in Fig. 2. A more extensive set of data was taken by Watts
and Ferrer'® by using strain gauges to measure the force on a
spinning baseball in a wind tunnel. These data cover the
range S=0.4—1.0, but only for speeds up to about 37 mph.
These data are roughly consistent with C; =S, independent of
Re, which is the parametrization used by Watts and Baroni.*°
The data of Alawaysg’9 were obtained using a high-speed
motion analysis technique to measure the spin vector and
track the trajectory of a pitched baseball. From these data C;,
was extracted for S in the range S=0.1-0.5 and for speeds
up to approximately 75 mph. The data of Jinji11 were taken
using standard video cameras to track the trajectory of a
pitched baseball and a high-speed camera to measure the
spin and spin axis just after release. Data were taken using
both live pitchers and a pitching machine. Only the pitching
machine data are shown in Fig. 2 because the live data dis-
play too much scatter to be useful. The plotted data cover the
narrow range S=0.2—0.3 and v=65-78 mph.

Not shown in Fig. 2 are the wind tunnel data of Refs. 19
and 20 in which C; was measured over a broad range of S
=0.2-0.9 and v=32-73 mph. For $<0.4, these data follow
the general trend of the Alaways data,g’9 but fall well below
the Watts and Ferrer data'® at higher S values. Interestingly,
the data of Refs. 19 and 20 show little or no dependence on
Re for fixed S in the range investigated. More interesting is
that a reverse Magnus effect (that is, C; <0) was observed
for a smooth ball with the dimensions of a baseball. For
example at v=55 mph, C; <0 occurs for §=0.15-0.55. A
reverse Magnus effect was also observed on a smooth ball by
Blriggs.17 No such effect has been reported for a real base-
ball.

The parametrizations used in Refs. 5 and 7 are also shown
in Fig. 2. The parametrization of Ref. 5 is a bilinear function
of S, which is an approximate fit to the Alawayss’9 and Watts
and Ferrer'® data, assuming that C; is independent of Re for
a fixed S, as suggested by the available data. The parametri-
zation of Ref. 7 comes from the heuristic argument that the
Magnus force on a spinning ball is related to the difference
in drag between two sides of the ball that pass through the air
at different surface speeds due to the rotation, an argument
first posed by Newton,' but more recently criticized in
Ref. 12. Such an argument leads to the expression7

v
C;=2CpS| 1+ —dCpldv |. 3
L D|: +2CD D U} (3)

Adair alrgued]4 that his prescription for C; provides a natural
explanation for the reverse Magnus effect observed by
Briggs,17 which occurs whenever the term in brackets is
negative. For a smooth ball, it is well known’! that at a
critical value of Re a “drag crisis” occurs in which Cj, de-
creases sharply (dCp/dv <0). Equation (3) predicts that a
drag crisis might lead to a reverse Magnus effect. Whether
such an effect occurs on a real baseball is not known. Equa-
tion (3) leads to a Magnus force in good agreement with the
Watts and Ferrer data ° at low speed, where C, is relatively
constant and equal to =0.5. For these conditions C; =S, in
good agreement with the Watts and Ferrer data'® and Ref. 5.
However, at the high speeds that are typical of pitched and
hit baseballs, the differences between the two parametriza-
tions are very pronounced, as shown in Fig. 3, where the
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Fig. 3. Calculated ratio of the Magnus force to weight for w=1800 rpm. The
solid and dashed curves utilize the parametrizations of Refs. 5 and 7, re-
spectively, the latter essentially reproducing Fig. 2.2 of Adair (Ref. 7).

calculated ratio of the Magnus force to weight is plotted as a
function of speed for fixed w=1800 rpm. Although the two
curves agree quite well for v <40 mph, they diverge for
larger speeds, and in the vicinity of v=100 mph (§=0.15),
the Magnus force found in Ref. 5 is about three times larger
than that given by Eq. (3).

It is the region of v and S that is most relevant to the game
of baseball, v=75-100 mph and $=0.15-0.25, where the
disagreement is largest between the two parametrizations.
The onlly data in this regime are the older wind tunnel data of
Briggs, 7 which are subject to rather large corrections. Ex-
tending the data to over 100 mph is one of the primary mo-
tivations for the present experiment. A second motivation is
to investigate the dependence of C; on Re (or, equivalently,
v) for fixed S. A third motivation is to address the question of
whether Eq. (3) is a reasonable parametrization of the lift
coefficient.

III. EXPERIMENT AND DATA REDUCTION

The experimental technique is to project an official Major
League baseball (mass=0.145 kg, radius=36.4 mm) ap-
proximately horizontally with backspin or topspin and to use
a motion analysis system to measure the initial velocity and
angular velocity and to track the trajectory over approxi-
mately 5 m of flight. For these conditions the vertical motion
is particularly sensitive to the Magnus force, which leads to a
downward acceleration smaller or larger than g, the accelera-
tion due to gravity, when the ball is projected with backspin
or topspin, respectively. Additional information is obtained
by measuring the total distance traversed by the baseball be-
fore hitting the floor, which is approximately 1.5 m below
the initial height. The projection device was an ATEC two-
wheel pitching machine, 'in which the speed of the ball and
the spin can be independently adjusted by varying the rota-
tional speed of the two wheels. The geometry of the machine
is such that the spin axis of the ball is constrained to be
perpendicular to the velocity vector. A total of 22 pitches
were analyzed, all in the “two-seam” orientation,” with
speeds in the range v=50-110 mph and angular speeds
in the range w=1500-4500 rpm. The corresponding ranges
of the Reynolds number and spin factor were
Re=(1.1-2.4) X 10° and S=0.090—0.595, respectively.

To measure the initial velocity and angular velocity of
the ball, a motion analysis system was used. The system
consisted of ten Eagle-4 cameras operating at 700 frames

121 Am. J. Phys., Vol. 76, No. 2, February 2008

per second and 1/2000 s shutter speed and the EVaRT4.0
reconstruction software.”* Each camera shines infrared LED
light onto the ball, attached to which is a circular dot of
retro-reflective tape. The tape reflects the light back to the
cameras, which records the coordinates of the dot in the
CCD array. The reconstruction software determines the spa-
tial coordinates in a global coordinate system by using trian-
gulation among the ten cameras. The cameras were posi-
tioned at staggered heights and overlapping fields of view
along a line approximately parallel to and 6 m from the line
of flight of the ball. To accomplish the triangulation, the
precise position and lens distortions of each camera were
determined using the following calibration scheme. A global
coordinate system is first defined by positioning an L-shaped
rod in the viewing volume of the ten cameras simultaneously.
The rod has four reflective dots located at precise relative
locations to each other. With these distances, the software
determines a first approximation to the location of each cam-
era. These locations are further refined and the lens distor-
tions determined by waving a wand throughout the tracking
volume of the cameras. The wand has three reflective dots at
known relative distances. Although the particular calibration
software is proprietary, it almost surely uses some variation
of the direct linear transformation technique.zs’26 A typical
root-mean-square (rms) precision for tracking a single dot is
1-2 mm. Additional calibrations and consistency checks
were performed. A plumb line was used to establish that the
y-axis of the global coordinate system made an angle of
0.16° with the vertical. The clock of the motion capture sys-
tem was checked against a precisely calibrated strobe light
and found to be consistent within 0.5%. A nonspinning base-
ball was tossed lightly in the tracking volume and the verti-
cal acceleration was measured to be g to within 1.5%.

The setup for this experiment is similar to that used in the
pioneering experiment of Alaways,8 but different in some
key respects. One difference concerns the deployment of
cameras. Alaways used two sets of motion capture cameras.
One set tracked the ball over the first 1.2 m of flight and was
used to establish the initial conditions; a second set tracked
the center of mass trajectory over the last 4 m of flight, start-
ing approximately 13 m downstream from the initial posi-
tion. This arrangement allowed a very long “lever arm” over
which to determine the acceleration but a short lever arm for
determining the initial spin. In the present setup, only one set
of cameras was used and distributed spatially so as to track
over the largest distance possible, approximately 5 m. The
same cameras determined both the initial conditions and the
acceleration. Tracking over a larger distance is useful for
measuring the spin for small S, because the angle through
which the ball rotates over the distance D is proportional to
SD. For all of the pitches analyzed in the current experiment,
the ball completed at least one complete revolution over the
tracking region. Some redundant information was obtained
by measuring the total distance R traversed by the baseball
while falling through a height of about 1.5 m. The second
difference concerns the deployment of reflective markers.
Alaways utilized four dots on the ball with accurately known
relative positions, allowing the direction of the spin axis to
be determined. In the present experiment, tracking more than
one dot proved difficult and unreliable because the automatic
tracking software would often confuse the dots when operat-
ing at high frame rates. Therefore only a single dot was used,
offset from the spin axis by approximately 15 mm. Conse-
quently, it was not possible to measure the spin axis, which
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Fig. 4. Trajectory data (top) for one of the pitches, where y and z are the
coordinates of the dot on the ball in the coordinate system shown in the
inset. The ball is projected at a slight upward angle to the +z direction and
is spinning clockwise (topspin) about an axis perpendicular to the y-z plane.
Solid curves are least-square fits to the data using Eq. (4b), resulting in
Cp=0.44 and C;=0.33. The long dashed curve is the center-of-mass trajec-
tory for the y coordinate, which is consistent with a downward acceleration
of 1.58g due to the combined effects of gravity and the Magnus force. The
short dashed curves are the center-of-mass coordinates for both y and z with
both Cj, and C; set to zero, indicating that the data are very sensitive to C;
but not to Cj,. The fit residuals for the y (points) and z (curve) coordinates
are shown in the bottom plot.

was assumed to be constrained by the pitching machine to lie
in the horizontal plane, perpendicular to the direction of mo-
tion. Subsequent analysis of the data showed no horizontal
deflection of the baseball, implying that the vertical compo-
nent of the spin is consistent with zero. Finally, the present
experiment operated at nearly three times the frame rate as
that of Alaways,g’9 allowing measurements over a wider
range of Re and S.

A plot of y(r) and z(¢) for one of the pitches is shown in
Fig. 4; y and z are the vertical and horizontal coordinates,
respectively, of the reflective marker. The motion in the y
coordinate is interesting, because the oscillatory motion of
the dot is clearly superimposed on a parabolic trajectory. The
downward acceleration associated with the parabolic trajec-
tory is due to the combined Magnus and gravitational forces.
The motion in the z coordinate also has oscillatory motion
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superimposed on the parabolic motion, but it is very difficult
to discern from the plot because of the large z component of
the velocity. The quantities C; and Cp are largely decoupled
from each other and are determined mainly by the accelera-
tion in the y and z directions, respectively.

The Levenberg-Marquardt nonlinear least-squares fitting
algorithm27 was used to fit these data to functions of the form

V(1) = yem(t) + A sin(wt + @), (4a)

72(t) = 7o (f) £ A cos(wt + ), (4b)

where the first term on the right-hand side is the center-of-
mass coordinate of the ball and the second term is the loca-
tion of the rotating dot with respect to the center of mass.
The center-of-mass coordinates are calculated by numeri-
cally integrating the equations of motion using the fourth-
order Runge-Kutta method, given the initial components of
the center of mass position and velocity (yem, Zems Uy, em» and
U,em) and the lift and drag coefficients C; and Cp,. The rota-
tion of the dot is characterized as an oscillation with ampli-
tude A, angular frequency w, and initial phase ¢, with the *
signs for backspin or topspin, respectively. The fitting proce-
dure was used to determine nine parameters: the four initial
center-of-mass values, the three rotation parameters, and C;
and Cp, the latter assumed to be constant over the 5 m flight
path. Depending on the initial speed, each fit had 100-300
data points, including the range R. This procedure is similar
to that used by Alaways.8

The curves in Fig. 4 are the results of the fit to the data.
Residuals for the fit are also shown in Fig. 4. The oscillations
in the residuals are out of phase with the primary motion by
90°, suggesting that the spin axis might be tilted slightly
relative to the normal to the y-z plane. The rms deviation of
the fit from the data in Fig. 4 is 0.4 mm for y(¢) and 12.7 mm
for z(¢). These values are typical of the fits for the other
pitches.

The method used to obtain C; and Cp, was checked using
an alternate simplified fitting procedure that avoids a numeri-
cal solution of the equations of motion by assuming constant
acceleration a, and a, for the two center-of-mass coordi-
nates. The fitting procedure determined the initial position,
velocity, and acceleration for each of the two center-of-mass
coordinates, in addition to A, w, and ¢. The values of the lift
and drag coefficients were derived by assuming that a, is due
to the combined effects of the Magnus and gravitational
forces and a, is due to the drag. These assumptions should be
reasonably well satisfied for the nearly horizontal trajectories
in this study. The simplified procedure results in values of Cp,
and C; that are within 10% of those obtained by the more
elaborate calculation, giving us confidence in the accuracy of
the latter procedure.

The inferred values of C;, which represent the main re-
sults of our experiment, are presented in Figs. 5 and 6. The
error bars on the values are estimates based on the rms de-
viation of the fits from the data, the accuracy of the calibra-
tion procedure, and the difference between the two fitting
techniques. Results for Cp are not presented. There is con-
siderably more scatter in our results for Cp than for Cj,
reflecting the generally larger rms deviation of the fit for z
than for y. It is easy to see from Fig. 4 that our technique is
much more sensitive to C;, which is determined by the cur-
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Fig. 5. Results for C; from the present motion capture experiment.

vature of y(¢), than to Cp, which is determined by the cur-
vature of z(7); the latter is nearly completely masked by the
large linear term.

IV. RESULTS AND DISCUSSION
A. Results for C;,

Our results for C; are plotted in Fig. 5 as a function of the
spin factor S. The C; values rise sharply for small S, then lie
on a smooth curve for S larger than about 0.10, increasing
approximately linearly with S. Figure 6 shows whether there
is a dependence of C; on Re for S approximately constant by
showing the dependence of C; on v for S in the range 0.15-
0.25. It is clear from the plot that C; has no strong depen-
dence on v over the range 50—110 mph, corresponding to Re
in the range (1.1-2.4) X 10°. This result is one of the primary
conclusions of this work.

The present results are compared with previous data in
Fig. 2, along with the parametrization in Ref. 5. For §=<0.3,
which is the region most relevant for the game of baseball,
the present results are in excellent agreement with the Ala-
ways data® and the parametrization of Ref. 5, although the
values of Jinjill are about 20% larger. The trend of both the
present and the Alaways data,®® extrapolated to larger S, fall
below the Watts and Ferrer'® points. Also shown is the pa-
rametrization of Eq. (3), calculated at 100 mph using Cj
values from Adair.” In the vicinity of §=0.17, corresponding
to a backspin of 2000 rpm, this curve falls well below the

0.3 g
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0‘1”‘.\”.".Hi.”‘i”..‘..‘
50 60 70 80 g0 100 110

<v> (mph)

Fig. 6. Results for C; from the present experiment for S in the range
0.15-0.25, demonstrating that C; does not depend strongly on v (or Re) for
fixed values of S.
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Fig. 7. Calculated trajectories of a hit baseball with an initial speed of
100 mph, angle of 30°, height of 3 ft, and backspin of O rpm (solid),
1000 rpm (long-dashed), and 2000 rpm (short-dashed). The points indicate
the location of the ball in 0.5 s intervals. These calculations utilize the Cp
values of Adair (Ref. 7) and the C, values from the parametrization of
Sawicki et al. (Ref. 5).

data. We find that the present data do not support the param-
etrization of Eq. (3), another conclusion of this study.

B. Implications for the flight of a baseball

In Fig. 7 a calculation is shown of the trajectory of a
typical hit baseball as a function of the initial backspin. For
the particular choice of initial conditions, increasing the
backspin from 1000 to 2000 rpm has the expected effect of
keeping the ball in the air longer, increasing the maximum
height, and increasing the total distance. In Fig. 8 a calcula-
tion is shown of the range of a fly ball as a function of the
initial angle for differing amounts of backspin. Again the
expected results are observed, the larger backspins resulting
in a smaller optimum initial angle for the maximum range.
Plots with similar quantitative results were shown by Watts
and Bahill.® The deflection of a pitched baseball due to the
Magnus force is presented in Table I for speeds and spins
typical of fastballs (90 mph) and curveballs (75 mph). The
total deflections are in accord with experimental
measurements.'*

400

350 |

300 §

range (ft)

250

107520 25 B0 35 40 45 50
6 (deg)

200

Fig. 8. Calculated range of a hit baseball with an initial speed of 100 mph,
height 3 ft, and backspin of O rpm (solid), 1000 rpm (short-dashed), and
2000 rpm (long-dashed), as a function of the initial angle 6. These calcula-
tions utilize the Cj, values of Adair (Ref. 7) and the C, values from the
parametrization of Sawicki er al. (Ref. 5).
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Table I. Calculated deflection d of a pitched baseball thrown with an initial
horizontal velocity v, spin w, and spin factor § after traversing 55 ft. These
calculations utilize the Cj, values of Adair (Ref. 7) and the C; values from
the parametrization of Sawicki e al. (Ref. 5). These deflections are in ac-
cord with experimental observations (Refs. 11 and 28).

v w d
(mph) (rpm) N (in.)
75 1000 0.11 16
75 1800 0.20 21
90 1000 0.09 14
90 1800 0.17 19

V. SUMMARY AND CONCLUSIONS

An experiment has been performed utilizing high-speed
motion analysis to determine the effect of spin on the trajec-
tory of a baseball. From these data, values for C; over the
range 50<v <110 mph and 0.1<§<0.6 are determined.
These values are in excellent agreement with those of
Alawaysg’9 in regions where they overlap. They are the only
precise values for C; in the region most relevant to the game
of baseball, namely 0.1 <S§<0.3 and 80 <v <110 mph. The
parametrization of Ref. 5 is found to give an excellent de-
scription of the data in this regime. Moreover, C; is found
not to depend strongly on v between 50 and 100 mph, for
fixed values of S in the range 0.15-0.25, contradicting ex-
pectations based on the model of Adair.”
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