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The nature of the forces causing the erratic motion
of a knuckleball has been investigated by measuring the
lateral force on a baseball in a wind tunnel. We have
identified two possible sources of a lateral force imbal-
ance that can give rise to the observed erratic changes
in the direction of a knuckleball as it moves through the
air. One of these results because the nonsymmetrical
location of the roughness elements (strings) gives rise to
a nonsymmetrical lift (lateral) force. A very slowly spin-
ning knuckleball will have imposed upon it a lateral
Jforce that changes as the positions of the strings change.
A knuckleball whose spin is identically zero has a
constant lateral force unless a portion of the strings is
precisely at a location where boundary layer separation
occurs. If this happens, the point of boundary layer
separation switches alternatively from the front to the
rear of the strings, shifting the wake from one position
to another, and thereby giving rise to a second possible
alternating force imbalance. A two-dimensional analysis
of the trajectory of the baseball indicates that the mea-
sured force can cause a deflection of the baseball’s
trajectory of more than a foot. An effective knuckleball
should be thrown so that it rotates substantially less
than once on its path to home plate.

INTRODUCTION

The knuckleball is the name given to a type of pitch in
the game of baseball. The ball is held with the first
knuckles or the fingernails (hence, the name knuckleball).
As it is thrown, the fingers are extended in such a fashion
as to inhibit the backspin normally possessed by a thrown
ball. Indeed, it is commonly believed that a properly
thrown knuckleball should have no spin at all. As a
knuckleball approaches home plate, it changes directions
erratically in an apparently random manner.

The lateral deflection of a spinning ball (curve ball)
has been studied by Briggs® and others and appears to be
well understood. It results when the spin of the baseball
causes boundary layer separation to occur further up-
stream on the portion of the ball’s surface that has réla-
tive motion against the flow of air past the ball. The
wake then shifts towards that side of the baseball and the
ball is deflected towards the opposite side.
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Fig. 1. Schematic of apparatus. The measuring device is in the position
used to measure drag.

In an effort to determine precisely the nature of the
forces that cause the erratic motion of the knuckleball, we
sought to model the situation as nearly as we could in the
fluid mechanics laboratory. The results of these experi-
ments are described herein.

APPARATUS AND EXPERIMENTS

The experimental arrangement that we used consisted
of a subsonic wind tunnel, a device for measuring lift and
drag, and a strip chart recorder for measuring and record-
ing the lift and drag forces.

A drag and lift measuring device was used to measure
the forces on the baseball in the wind tunnel. The device
(Fig. 1) consisted of two beams rigidly attached at the
base and pinned at the top. Foil strain gauges located at
A, B, C, and D were placed on each side of the beams
and were connected to a Baldwin-Lima—Hamilton micro
strain indicator in such a fashion that the total strain out-
put was four times the strain measured by one of the
gauges. .

A system of known weights was attached by a pulley
to the test stand in order to calibrate the measuring de-
vice. The resulting curve confirmed that the strain was di-
rectly proportional to the force component.

A baseball mounted on this device and placed in a
wind tunnel will experience the same flow history as a
knuckleball moving through still air at the velocity of the
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Fig. 2. Position of baseball at § = 0°. The ball can be rotated in the
direction @ to a new position.
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air in the wind tunnel. The velocity profile across the duct
of the wind tunnel was measured by using a static Pitot
tube. The velocity at a distance 3 in. from the center line
of the test section was within 1% of the center line veloc-
ity. The velocity across the test section was therefore as-
sumed to be independent of radial position.

With the ball in place and the tunnel velocity at about
50 ft/sec, the chart recorder indicated a lateral force with
high-frequency noise superimposed. The frequency of the
noise was at least 10 cycles/sec. The noise was probably
associated with the turbulence in the wind tunnel. By in-
serting grids of various sizes in the wind tunnel upstream
of the baseball, we were able to decrease the magnitude
of the noise by a factor of 2 or 3. In any case, the fre-
quency of the noise was so high that it could cause no
measurable deflection of the baseball. We shall give an
estimate of this in a later section of this paper. The con-
stant lateral force that we measured was of sufficient
magnitude (~ 0.05-0.1 1b, the same order of magnitude
as the drag) to cause a significant deflection of the
baseball in the distance of 60.5 ft from the pitcher’s
mound to home plate. However, the force was constant.
If the ball did not spin, it could give rise to a laterally
curved trajectory, but not to the erratic motion associated
with the knuckleball.

The lateral force that we measured resulted from the
fact that the strings on the surface of the ball form a
roughness pattern that is nonsymmetric. The flow pattern
about the ball (including the wake) will therefore be non-
symmetric. This will naturally cause a nonsymmetric lat-
eral force distribution and result in a net force in one di-
rection or another. This explanation seems to be justified
intuitively. Furthermore, by changing the orientation of
the baseball, we were able to change the measured drag
force by as much as 50% and to cause the lateral force to
change sign.

While we were investigating the effect of the location
of the strings on the drag and lateral forces, we discov-
ered that when the ball was oriented in a certain way the
strip chart began to record a randomly changing lateral
force with a frequency low enough (<1 cycle/sec) to
cause a significant lateral deflection of the baseball. This
only occurred for certain special orientations, and we
concluded rather quickly that these orientations place a
portion of the strings of the baseball at approximately the
position where boundary layer separation occurs, at an
angular position about 105°-115° from the front stagna-
tion point.

We suspected that the oscillatory force resulted from

Am. J. Phys. Vol. 43, No. 11, November 1975

the point of boundary layer separation changing from the
front to the back of the stitches, thereby causing an oscil-
lating wake. In order to check this theory, fine wool
threads were individually glued to the rear portion of the
ball (in the wake). The ball was then reinserted in the
wind tunnel. The location of the wake could be detected
as that portion of the rear of the ball where the wool
threads indicated backflow.

As we expected, one could clearly detect the fluctua-
tion of the edge of the wake as it moved from the front
edge of the stitches to the rear edge and back again.

LATERAL FORCE

It now remained to obtain quantitative measurements to
be sure that the forces we observed could cause the ball
to deflect as much as a foot or two as they are observed
to do for real baseballs. We also wanted to find out how
the magnitude and frequency of the fluctuating force var-
ied with velocity, and how. the constant lateral force var-
ied with velocity and with the orientation of the baseball.

A standard 2.88-in.-diam baseball was inserted in the
wind tunnel in the position shown in Fig. 2. An isometric
sketch is shown in order to establish the initial position of
the strings. With the ball oriented in this way the lateral
force was zero. The ball was then turned about the verti-
cal axis. The lateral force was recorded for various values
of the angle 6 between O and 27 rad. The velocity was
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Fig. 4. Variation of difference between the maximum and minimum lat-
eral forces.
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Fig. 5. Variation of the magnitude of the fluctuating force.

68 ft/sec. The results are shown in Fig. 3.

Figure 3 reveals several interesting features, some of
which we did not anticipate. The lateral force varied be-
tween about 0.1 Ib towards the left and 0.1 Ib towards the
right. At angles of approximately 6 = 140° and 220° there
was a nearly discontinuous jump in the lateral force from
about 0.08 Ib in one direction to a similar value in the
opposite direction. Also, at approximately = 52° and
310° there was an instability that caused the lateral force
to alternate from left to right with an amplitude of about
0.18 1b and a frequency of 0.5-1 cycle/sec. This alternat-
ing force occurred when a portion of the strings was lo-
cated just at the point where boundary layer separation
takes place. As we pointed out above, it resulted when
the point of separation changed from one side of the
strings to the other. It did not always occur when the
strings lay at the edge of the wake. For example, at
0 = 140° and 220°, there occurred a practically discon-
tinuous change in the lateral force, indicating that the
separation point had moved from the front to the rear of
the strings (or vice versa) and remained there. The data
near all four of the positions 8 = 52°, 140°, 220°, and
310° were quite repeatable.

Figures 4 and 5 give an indication of how the various
forces change with velocity. In the Reynolds number
range in question (Re = 10°) the drag coefficient for a
sphere is approximately constant.? The drag force there-
fore increases as the square of the velocity. It is there-
fore not too surprising that the magnitudes of the various
lateral forces increased as approximately the square of the
velocity. Figure 4 shows such a variation in the difference

between the maximum and minimum lateral forces on the
baseball for a given velocity. Figure 5 shows how the
magnitude of the fluctuating force near 6 = 52° and 310°
varied with the velocity. The frequency of this fluctuating
force did not appear to vary appreciably with velocity,
nor did the value of @ for which it occurred.

THE TRAJECTORY

We now wish to compute possible deflections in the
trajectories of thrown balls in response to the forces mea-
sured, and to draw some conclusions about the possible
origin of the erratic motion of knuckleballs. We begin
with a simple force balance on the baseball in the direc-
tion mutually perpendicular to the original direction of
level flight of the ball and the gravitation vector. Al-
though the lateral force is actually perpendicular to the in-
stantaneous direction of flight of the ball, it serves our
present purpose best to use the approximation, accurate
for small deflections,

d*x
F=m%3, (1)

where F is the lateral force, m is the mass of the
baseball, and d%x/dt? is the lateral acceleration of
baseball. The steady-state solution that results when F is
a periodic force F sin(wt) is

F
=0
x—mw2s1n(wt+1r). (2)

The magnitude of the displacement from the undisturbed
trajectory of the baseball therefore varies inversely with
the square of the frequency of the imposed force. Taking
the mass of the baseball to be 1072 slugs and' the force to
have a magnitude of 0.05 Ib, we find that a deflection of

1 ft or more can be obtained only if the frequency is less

than about 0.2 cycle/sec. In particular, the high-frequency
force that we attributed to wind tunnel noise could cause
a deflection of only about 5 X 10~* ft if we assume its
frequency is 10 cycles/sec and its amplitude is 0.02 1b.

If a lateral force F(f) is suddenly applied to a ball
whose initial lateral velocity and displacement are zero,
the lateral displacement after a time ¢ will be approximately

x(t) = m~! fo‘ fo'F(x)dxdr. 3)

Fig. 6. Typical trajectories, v = 68 ft/sec.

962 [ Am. J. Phys. Vol. 43, No. 11, November 1975

1/4 Rev. per 60.5 1p
T 9t
[
2
°
®
®
o 1/2 Rev. per §0.5 ft
_ Distance from pitcher’s Mound (ft)
LJ
¢ 4}
-
-

R. G. Watts and E. Sawyer



In particular, if F(¢t) is a constant, F,
X(t)=% (Fo/m)t2, @)

If the forward speed of the ball is constant, the time to
reach home plate will be D/V, where D is the distance
traversed by the ball and V is its speed. Hence, the dis-
tance the ball will curve by the time it reaches home plate
is

X =3 (Fy/m)(D/V), (5)

When we recall that the lateral force F is (roughly speak-
ing) proportional to the square of the velocity, we obtain
the somewhat surprising result that the lateral deflection
does not vary with speed.

If the knuckleball is thrown in such a fashion that it
has no spin at all, it can only curve laterally in one direc-
tion. The maximum deflection will be dependent only on
the initial orientation of the baseball (i.e., the initial loca-
tions of the strings). The single exception can occur in
the remote possibility that the strings are initially
positioned so that they disturb the point of boundary layer
separation and bring about the oscillating wake
phenomena described above. This could cause the errati-
cally fluctuating lateral motion that is actually observed to
occur with real knuckleballs.

A much more plausible argument is that the ball spins
very slowly as it approaches the plate, thereby exposing
the ball to a varying lateral force depending on the orien-
tation of the ball at any given instant. If the ball spins too
fast, we can see from Eq. (2) that the deflection will be
small. For example, if we approximate the curve in Fig.
3 by a sine wave of amplitude 0.08 1b and we assume the
baseball is thrown at 60 ft/sec and undergoes two com-
plete revolutions before reaching home plate, the
amplitude of the deflection is only 0.048 ft. The spin of
the ball should therefore be substantially slower than this.

An important feature of Fig. 3 is.the nearly discontinu-
ous change in the lateral force at § = 140° and 220°. If
the ball should move through this orientation at some
time during its flight towards home plate, the induced
slow curvature caused by the slowly varying lateral force
will suddenly become a very sharp ‘‘break,”’ that is, a
sudden change in curvature.

We have numerically integrated Eq. (3) using our data
for the cases where the ball is initially oriented such that
6 =90° and the spin is such that the ball undergoes a
quarter- and a half-revolution, respectively, during the
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time required to reach home plate. The results are shown
in Fig. 6. Clearly, the first is the better pitch.

We wish to make one additional remark regarding the
physical nature of curving baseballs. It is frequently
stated by those who actually play the game that a curving
paseball ‘‘breaks’’ rather than simply deflecting with con-
stant curvature. If a lateral force F(¢) is applied to a
baseball so that it is always perpendicular to the instan-
taneous direction of flight, the baseball will curve in such
a fashion that F(¢) is equal to the instantaneous centripetal
acceleration mvik(t), where k(¢) is the instantaneous cur-
vature of the path of the baseball. Thus, a constant lateral
force would give rise to a constant curvature

Kk =Fy/mvi (6)

No ‘‘break’’ occurs. From the batter’s vantage point,
however, things appear quite different. As the approxi-
mate solution given as Eq. (4) shows, what the batter
sees is a projectile whose lateral deflection is changing at
an accelerating rate. How much worse if the deflecting
force is erratic!

SUMMARY AND CONCLUSIONS

We can summarize our most important results as fol-
lows:

(i) There are two possible mechanisms for the erratic
lateral force that causes the fluttering flight of the
knuckleball. A fluctuating lateral force can result from a
portion of the strings being located just at the point where
boundary layer separation occurs. A far more likely situa-
tion is that the ball spins very slowly, changing the loca-
tion of the roughness elements (strings), and thereby caus-
ing a nonsymmetric velocity distribution and a shifting of
the wake.

(i) An effective knuckleball should have a slight
spin. Too much spin could prove disastrous, however,
since the inertia of the ball would not allow a significant
deflection.

(i) The magnitude of the lateral force increases ap-
proximately as the square of the velocity. This results in a
total lateral deflection that is independent of the speed of
the pitch.

IL. J. Briggs, Am. J. Phys. 27, 589 (1959).
2L. Prandtl, Essentials of Fluid Dynamics (Hafner, New York, 1952),
p. 191. - :
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