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The lateral force on a spinning sphere: Aerodynamics of a curveball
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The lateral force on a spinning baseball in a wind tunnel has been measured. The magnitude of the
force is nearly independent of the orientation of the seams of the ball. The drag coefficient appears
to be at most weakly dependent on Reynolds number and to be principally a function of the ratio
of the rotational speed of the equator of the ball to the wind tunnel speed. This is to be compared to
the work of Briggs, which implies a strong effect of Reynolds number on the drag coefficient.

I. INTRODUCTION

The fact that tennis balls curve because of the spin im-
parted to them was noted as early as 1671 by Sir Isaac
Newton.! Two hundred years later, Lord Rayleigh,? also in
a paper describing the irregular flight of the tennis ball,
credited the German engineer G. Magnus with the first
explanation of the lateral deflection of a spinning ball.
From this the phenomenon derives its name: the Magnus
effect. It has been pointed out by Barkla and Auchterlonie®
that Magnus’ explanation was not published until 1853,
more than a century after a similar explanation had been
given by B. Robins in his book New Principles of Gunnery*
published in 1742. Both Magnus and Robins were interest-
ed in the trajectories of cannon and musket balls. Robins
experimented with the effect of spin on the curvature of the
paths of musket balls by firing them from a gun with slight-
ly curved barrel. With the barrel bent to the left, the ball
was forced into contact with the right side of the bore, thus
imparting spin on the ball in the clockwise direction when
viewed from above. The paths of the musket balls fired in
this way were curved to the right.

The explanations given by Robins and Magnus were, in
fact, not entirely correct. Their arguments went as follows:
A spinning ball induces in the air around it a kind of whiri-
pool of air in addition to the motion of the air past the ball
as the ball flies through the air. This circulating air slows
down the flow of air past the ball on one side and speeds it
up on the other. In accordance with Bernoulli’s theorem,
when the kinetic energy of a fluid increases, its pressure
decreases. Thus, the side of the ball on which the air speed
is lower experiences a higher pressure than the other side.
The resulting pressure (and force) imbalance causes the
ball to move laterally toward the low-pressure (high-
speed) side.

What actually happens is somewhat more complicated
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than this. As pointed out by Briggs,” boundary layer sepa-
ration is apparently delayed on the side of a spinning ball
that is moving in the same direction as the free stream flow
of air, while separation occurs prematurely on the side
moving against the free stream flow. The wake region of the
ball therefore shifts toward the side moving against the free
stream flow, deflecting the flow past the ball in that direc-
tion. The resulting change in momentum causes a force on
the ball in the opposite direction.

The most systematic experimental determination of the
forces acting on a spinning baseball that was reported in
useful detail in the scientific literature was conducted by
Lyman Briggs.’ A spinning baseball was dropped across a
horizontal wind tunnel in which the velocity of the air was
known, and the deflection of the ball’s path caused by the
spin was measured. The ball was mounted at the lower end
of a shaft at the top of the wind tunnel, held in place by a
suction cup device. It was initially shielded from the wind
by a small hollow cylinder. By rotation the shaft using a
small electrical motor, the ball could be spun with the axis
of rotation in the vertical direction. The rate of rotation was
measured with a strobotac. With the ball spinning at a
known rate, the suction acting through the suction cup
device was turned off, so that the ball fell out of its protec-
tive shield and dropped a distance of six feet across the
wind tunnel. The air in the tunnel pushed the ball down-
stream, but, presumably because of the spin on the ball, it
was also deflected to one side or the other, depending on the
direction of rotation.

Using the measured lateral deflections reported by
Briggs, it is a simple matter to calculate the necessary later-
al forces. The results are shown in Fig. 1. Briggs reported
that the lateral force is proportional to the product of the
square of the wind tunnel speed () and the rotation rate of
the ball (w).

According to Joseph F. Drury,® aerodynamicist Igor Si-
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korsky measured the force on a spinning baseball by plac-
ing spinning baseballs inside a wind tunnel at air speeds
between 80 and 110 mph. By supporting the balls on a
slender spike connected to the shaft of a small motor
mounted on a balance, the ball could be rotated and forces
on the ball measured. The details of what Sikorsky found
are somewhat obscured by the fact that they were appar-
ently never reported in the scientific literature. The article
cited above, however, states that Sikorsky found that the
deflection (d) of a spinning baseball on its path toward
home plate is directly proportional to the rotation rate (@)
and to the square of the velocity (V) of the ball times the
time (z) required to reach home plate, and inversely pro-
portional to the mass (m) of the ball;

d=KV*2w/m. (n

Drury also reported that Sikorsky had found that a base-
ball thrown at a speed of 80 mph with a rotation rate of 600
rpm would be deflected by 7.5 to 19 in. depending on the
orientation of the seams relative to the axis of rotation of the
baseball (emphasis ours). From this it can easily be deter-
mined that 1.37X107% <K <3.48x107% (s*/m), de-
pending on the orientation of the seams of the baseball.

If a constant (lateral) force F, is applied in a direction
perpendicular to the forward motion of the baseball it can
be shown using elementary physics that the ball will be
deflected in the direction of the force by a distance

d=FL t2/2m- (2)

(This formula is derived under the assumption that the
displacement d is much smaller than the total distance
traveled by the ball. The actual trajectory of the ball when
acted upon by a single force perpendicular to Vis a circle.)
By combining Eqs. (1) and (2) it is easily shown that the
force on the ball in the Sikorsky experiment must have
been:

F, =2KV?0. (3)

Thus, the lateral force acting on a rotating baseball was
found to be directly proportional to the rotation rate and to
the square of the translational velocity, in agreement with
Briggs’ conclusion. '
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The lateral force on a spinning baseball based on Drury’s
description of the Sikorsky results is shown in Fig. 1 along
with the data of Briggs. Two lines are shown representing
the Sikorsky results, one based on the maximum force, i.e.,
the largest value of K, and one based on the minimum
force. Although both Briggs and Sikorsky (as reported by
Drury) indicated that the lateral force is proportional to
V %0, the prediction based on the Sikorsky experiment over-
estimates the Briggs data by a large amount, even when the
seams of the baseball are placed so that the force is at its
minimum.

Apart from the obvious differences in the magnitudes of
the forces implied by the Briggs data and the results of
Sikorsky (as reported by Drury), a new question is raised
because of the possible dependence of the force on the ori-
entation of the seams of a baseball. Drury states that Sikor-
sky discovered a large effect, yet Briggs reported none at
all. .

There is another curious aspect of these results. Accord-
ing to the Kutta—Zhukovskii theorem,’” whenever a two-
dimensional object is moving through an inviscid fluid, and
there is a net circulation of the fluid about the object, there
results a force mutually perpendicular to the velocity vec-
tor and the vorticity vector associated with the circulation.
This force has a magnitude that is proportional to the prod-
uct of the velocity and the circulation. Experimental mea-
surements of lift on rotating cylinders appear to bear this
out.® It seems reasonable that the lift force on a rotating
sphere would also depend on w¥ rather than on ¥ 2. Re-
cent experiments on golf balls by Bearman and Harvey®
indicate that this is the case.

In the following section, we describe a new set of experi-
ments designed to determine the effect of the orientation of
the seams on the lateral force on a rotating baseball, and
also to determine whether the lift force depends on @ ¥ ? or
onwV.

II. APPARATUS AND EXPERIMENTS

The experimental arrangement that we used consisted of
a subsonic wind tunnel, a device for measuring lift on a
spinning ball, and devices for measuring the rotational and
free stream velocities. Three baseballs were impaled on 6.3-
mm-diam shafts with the seams in the positions shown in
Fig. 2. The shaft of a particular ball was then mounted in a
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*

Fig. 2. The three seam orientations tested.
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frame as shown in Fig. 3. An impeller mounted on the end
of the shaft was used for creating rotation by the use of
high-speed air from a nozzle. The entire device was mount-
ed in the test section of a subsonic wind tunnel. Air in the
tunnel flows from right to left in Fig. 3. Drag and lift forces
were simultaneously manifest through bending stresses in
the Plexiglas supports. These stresses were measured by
strain gages mounted on each side of the two Plexiglas sup-
ports. The device was calibrated by hanging known
weights from the shaft and measuring the strain using a
microstrain indicator.

With the wind speed in the tunnel at a constant level, the
ball was set spinning. The rotation rate was regulated by
varying the speed of air from the nozzle and measured us-
ing a phototachometer. Owing to the position of the shaft,
the strain in each of the Plexiglas arms was the result of
both drag and lift forces. Two experiments were performed
at each wind (free stream) velocity/rotation rate combina-
tion, one with clockwise and the other with counterclock-
wise rotation. The strain indicator measurements could
then be subtracted and the effect of the drag force was can-
celed. The difference between the two measurements divid-
ed by two was taken to be the effect of the lift force alone.

The wind tunnel used was one commonly used in the
undergraduate laboratory at Tulane University.

II1. THE LIFT FORCE

The data resulting from our measurements are shown in
Fig. 4. We were at first surprised to find essentially no de-
pendence of lift force on orientation. In retrospect, this
does not seem so surprising. The ball apparently operates
as a fully rough sphere regardless of where the seams are
located. To check this hypothesis we tested a rough sphere

the same diameter as a baseball but without seams. Balls of -

this type are used in baseball pitching machines. The balls
have very nearly the same weight and diameter as baseballs
but the surface is covered with dimples jn the manner of
golf balls. The data obtained is shown in Fig. 4 and labeled
“dimpled ball.” It agrees quite well with the standard base-
ball data.

The lift data of Briggs and the lines bounding the Sikor-
sky data are shown in Fig. 4 for comparison. At a given
value of ¥ >, our measured lift forces are significantly larg-
er than those of Briggs, and fall between the Sikorsky lim-
its. Assuming F; approaches zero as V ?w approaches zero,
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Fig. 4. Lift data according to these experiments.

it appears clear that our data do not show a linear depend-
ence of F; on ¥ *w. Furthermore, the data of Bearman and
Harvey on golf balls indicate that the lift force depends not
on ¥ 2w but on Vw. To lay a groundwork for the discussion
of this data and its connection with our own data, we turn
to dimensional analysis.

IV. PRESENTATION OF THE DATA AS
DIMENSIONLESS GROUPS

Fluid mechanics data is most appropriately presented in
terms of dimensionless groups. In the present case, the ap-
propriate dimensionless groups are the lift coefficient
C, =F, /1 pV’A, the Reynolds number Re = VD /v, the
ratio of the speed of the surface of the ball relative to its
center to the translational speed, mDw/V, and some mea-
sure of the roughness of the sphere, for example, the ratio of
the mean roughness height to the sphere diameter €/D.
Here F, is the lift force, p is the density of air, ¥'is the speed
of air in the wind tunnel, 4 is the cross-sectional area of the
ball, D is the diameter of the ball, v is the kinematic viscos-
ity of air, w is the rotation rate of the ball, and € is the mean
roughness height. Thus we suppose that

Do €
= ,Re, —1}.
C.=f ( 7 D) | 4
Presented in this form, the result should be valid for any
sphere, not only for baseballs. Data on spinning golif balls
by Bearman and Harvey,’ on golf balls and smooth spheres
presented by Davies'” can be compared to the present data,
as can the pioneering smooth sphere data of Maccoll.!!

Data of Bearman and Harvey, Davies, Briggs, and Mac-
coll are presented along with our data in Fig. 5. Unfortu-
nately, Davies’ data was obtained at a single translational
speed, corresponding to a Reynolds number of 9 < 10*. All
of Briggs’ data correspond to larger Reynolds numbers,
while all of our data is for smaller Reynolds numbers.
Speed limitations in the wind tunnel available to us pre-
vented us from obtaining data at Reynolds numbers com-
parable to those of Briggs. These same speed limitations
also prevented us from obtaining data at values of 7Dw/V
as small as those of Briggs.
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According to the Kutta—Zhukovskii theorem, the lift
force should be directly proportional to @V. This means
that the lift coefficient should be directly proportional to
mDw/ V. If the lift were a linear function of ¥ ?w, as indicat-
ed by Briggs, then it must follow that C; is proportional to
the product of #Dw/V and the Reynolds number,

ﬂDwZQ
.

(3)

C.=a

This is most definitely in conflict with our data and with
the Bearman and Harvey data. The smooth sphere data of
Maccoll also show only a very weak dependence of C; on
Reynolds number. The smooth sphere data of both Mac-
coll and Davies indicate that, although the dependence is
obviously not linear, C; varies primarily with 7Dw/V and
is less strongly dependent on the Reynolds number. Briggs’
data for baseballs, on the other hand, show a strong linear
dependence of C; on Re. The rough sphere (dimpled golf
ball) data of Davies indicate a much larger lift coefficient
than the Briggs data at a similar Reynolds number. Bear-
man and Harvey give larger C; than Davies.

The data of Bearman and Harvey span a Reynolds num-
ber range of 0.4 X 10° < Re < 2.4 X 10°. Bearman and Har-
vey comment that a few data points taken at low Reynolds
numbers and low spin rates imply that under those condi-
tions the lift coefficient may be a weak function of Reyn-
olds number. However, whenever Re>0.6X10°, C; is
largely independent of Reynolds number and a function of
7Dw/V only.

Our data, taken at higher values of #Dw/V than either
the Briggs or Davies data because of the speed limitations
of our wind tunnel, show very little dependence of the lift
coefficient on Reynolds number. Our values of C; appear
to be consistent with the Davies data at low values of 7Dw/
V, but our values continue to increase with wDw/V, at least
up to mDw/V = 1.5, while the Davies data shows practical-
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ly no increase after mDw/V = 0.5. The data of Bearman
and Harvey appear to be consistent with our data in that
C, is a very weak function of Reynolds number.

V. SOME COMMENTS ON THE PATHS OF
SPINNING BASEBALLS

The deflection of a spinning baseball on its path to home
plate is given by

d=F.t*/2m. (6)
The time required to reach home plate is
t=L/V, @)

where L is the distance between the pitcher’s release and
home plate, approximately 18 m. If, as Briggs reported, the
deflecting force is K,V %, then

d=K,L’0/2m, (8)

independent of the speed of the pitch. On the other hand, if
the deflecting force is K, Vw, as we claim, then

d = K,L0/2mV X 9)

and is inversely proportional to the speed of the pitch.

According to Briggs’ data, K, =2X10"° ns*/m%
Hence, a pitch rotating at 2000 rpm (227 rad/s) would be
deflected by 0.5 m. (The mass of a standard baseball is
0.145 kg.) According to our data, K, = 5.5X 10~ *kg, and
with @ = 2000 rpm and ¥V = 80 mph (35.76 m/s), the ball
would be deflected by 0.4 m.

The rotation rates and speeds used above are reasonably
representative of those associated with curveballs thrown
by professional baseball pitchers.>!? The calculated deflec-
tions are also reasonable according to Selin.'?> Therefore
these calculations do not form a strong argument in favor
of either the Briggs data or our own and that of Bearman
and Harvey. It is perhaps of interest to note that baseball
players apparently believe that slower pitches curve further
than faster ones.!? This, however, could also result because
when throwing the ball more slowly the pitcher can put
more effort into spinning the ball and therefore obtain a
higher rotation rate with a slower pitch.

A comment concerning the apparent absence of any
strong effect of seam orientation on the lateral force seems
warranted, especially since baseball pitchers believe the ef-
fect to be important. We can only guess that the way in
which a baseball is gripped allows the pitcher to apply more
spin to the ball with some string orientations than with
others.

V1. CONCLUSIONS

We have discovered only three sets of data on the lift
force on rough spinning spheres, those of Bearman and
Harvey, Briggs, and Davies. In addition, some rather
vague general statements have been attributed to Igor Si-
korsky by Joseph Drury. These data sets appear not to be
consistent with each other. We have obtained some new
data which are not consistent with either the Briggs data or
the Davies data, but are consistent with the Bearman and
Harvey data. According to our data, the lift coefficient for
rough spheres is a function of the ratio 7Dw/V and is at
most a weak function of Reynolds number. This seems
more consistent with the Kutta—Zhukovskii theorem than
do the results of Briggs, although the Kutta-Zhukovskii
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theorem is strictly applicable only to two-dimensional in-
viscid flow.

It appears that the force on a curveball does not depend
strongly on the orientation of the seams as suggested by
Drury in his description of Sikorsky’s experiments. In gen-
eral, it appears that the lift coefficient is principally a func-
tion of mDew/ V and the roughness of the sphere and is only a
weak function of the free stream Reynolds number.
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A torsional pendulum consisting of an 8-mil boron-tungsten fiber and inertial member is
described. The torsional oscillations are excited electrostatically and detected by a frequency
modulation technique. Both the dynamic shear modulus and the internal friction can be
measured. In addition, this system exhibits the resonance behavior characteristic of a high Q

oscillator.

INTRODUCTION

Many novel experiments have been developed to mea-
sure the dynamic shear and Young’s modulus for a variety
of solids.!” These systems usually involve longitudinal,
flexural, or torsional vibrations of a uniform rod or beam
driven at resonance. Some of these apparatuses also allow
for the determination of the internal friction inherent in
any oscillating body. In this paper we describe an electro-
mechanical system that allows one to measure the dynamic
shear modulus and the internal friction of an electrically
conducting fiber or thin rod.

For a simple torsional pendulum with low damping, the
natural frequency, f, of oscillation is

f=(1/277')\/K/I, ()
where 7 is the moment of inertia of the inertial member and
for a uniform rod (or fiber)

K = Gma*/2L. (2)

Here, G is the shear modulus, « is the radius of the fiber,
and L is the free length between the inertial member and
the clamped end of the fiber. Thus, for a given fiber, the
natural frequency of torsional vibration is related to its
length according to

fal/NT (3)

and a measurement of £ vs 1/J/L can yield a precise deter-
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mination of the shear modulus. In addition, if the system
behaves as a discrete mass-spring oscillator with the iner-
tial member corresponding to the mass and the restoring
torque and internal damping resulting from the fiber, then
thg amplitude of the torsional vibration can be expressed
as

Agpo/o
= > — . (4)
[(0/0 — w/w5)" +Q "1y
Here w is the angular driving frequency, w, is the natural
frequency of the undamped oscillator, and Q is the quality
factor. By fitting Eq. (4) to an experimentally determined
resonance curve, one can obtain the @ of the fiber.

EXPERIMENTAL PROCEDURE

The torsional pendulum is constructed by cementing one
end of the fiber in the middle of a thin rectangular shaped
aluminum foil (0.0051X0.48%X1.60 cm®) and firmly
clamping the other end at various lengths L (see Fig. 1).
Placing metal screws in an insulated holder at symmetric
positions near opposite ends and sides of the aluminum
vane forms two coupled parallel plate capacitors, hereafter
referred to as the sample capacitor. Establishing a potential
between the two screws and the vanes forms a couple. Exci-
tation of the torsional mode of oscillation results on appli-
cation of an ac voltage across this sample capacitor. Since
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