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The dynamical theory of the baseball bat
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A theory of the elastic behavior of an irregularly shaped, cylindrically symmetric object is
developed and applied to the study of the familiar baseball bat. The normal mode, standing wave
patterns of elastic vibrations are obtained and displayed graphically. The lowest 20 normal
modes, extending in frequency up to about 3 kHz, are used to study and display the elastic
response of the bat in the first few milliseconds after striking a ball. The contribution of the normal
maode elastic vibrations to the hit ball speed is also developed, and the consequences for the batter

(and fielders) are explored.

L. INTRODUCTION

Without widespread interest in the game, the physics of
the baseball bat would be considerably less interesting. Be-
cause of the game, however, almost all American readers
have knowledge of this curious cultural artifact as well as
working experience in its use. This lends importance to
what might otherwise be a matter of limited application
and interest.

The baseball bat can serve as a familiar medium to draw
the attention of students and lay audiences to the general
subject of vibrations and waves, the dynamics of collisions,
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the flight of projectiles, the theory of elastic deformations,
and a few other related subjects. As we see in the following,
all these topics are prominently involved in developing a
theory of the bat. It is appropriate that there is already a
significant literature dealing with the behavior of this
wooden cudgel.

The bat is a homogeneous, elastic bar of varying cross
section. The regulations specify no more than a maximum
diameter (2 }in.) and a maximum length (42 in.), leaving
considerable room for adjustment of the shape. As it devel-
ops, the longitudinal contours have interesting conse-
quences in the dynamical behavior, and possibly in the
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game as well. The irregular shape also precludes any possi-
bility of accurate analytical solution for a realistic model. It
is clear from the outset that the tool for study of the bat is
the computer.

In the following sections, we will first develop a set of
equations describing the motion of the bat as an elastic
object. We then use these equations to find the normal
modes of vibration, that is, the standing wave forms the bat
can support and their characteristic frequencies. Some re-
cent experiments on the vibration of a bat by Brody' are
discussed in light of these normal modes.

Following this, we can develop the effect of the various
bat vibrations on the recoil of the ball. There are some mild
surprises in this latter result with possibly some conse-
quences for the game. We verify what every pitcher
knows—that the outside edges of the plate are dangerous
territory for the defense—and add some new reasons why
this should be true.

Finally, we display the effect of the ball impact on the bat
motions. These prove to be complex, but overall sustain the
customary assertions about the “sting” of the bat, the han-
dle motion resulting from an improperly hit ball.

I1. THE MODEL AND EQUATIONS OF MOTION

The wave equation for compressional waves on a uni-
form, homogeneous bar can be found in standard refer-
ences such as Morse’ “Vibration and Sound.”> This con-
ventional approach is unsatisfactory for a study of the bat
in several respects. Most conspicuously, the bat is not uni-
form in cross section. There is no analytic approach that
will be successful for arbitrary contours such as those we
wish to study. Second, the conventional theory of beam
deformation assumes at the outset that the deformations
are locally of pure longitudinal compressional character.
The method we develop here shows that while this is a good
approximation at the lowest few frequencies, there is a
shearing component to the motions. This shearing does not
change the qualitative behavior of the modes, but does alter
the numerics in a measurable amount. A final difficulty is
that the no-shear “simplification” leads—for the uniform
bar—to a fourth-order equation in the bending derivatives.
When this formalism is extended to the nonuniform case of
the bat, the resulting numerical system is outside the capa-
bilities of most numerical packages, producing a so-called
polynomial eigenvalue equation to be solved. The method
we develop here, by contrast yields a pair of coupled sec-
ond-order equations. In mathematical principle these are
of the same level of complication, but in execution on the
computer, our system proves a much more tractable prob-
lem.

We imagine the bat sliced up like a loaf of bread, i.e.,
composed of a number of parallel, circular sections elasti-
cally coupled to their neighbors. Each section is capable of
transverse displacement and rotation about a transverse
axis. We consider only the case of a directly hit ball, thereby
obviating the need to treat any torsional motion of the bat.
We also do not include any transverse compression of the
individual slices in the motion.

In Fig. 1 we show three neighboring slices undergoing
displacement and subsequent motion. The force between
neighbors arises from their relatively sheared displace-
ments and their relative rotations. In Fig. 1, however, we
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Fig. 1. The sliced loaf model of a bending beam. Three slices of an arbi-
trary bent and sheared bar are shown sheared relative to each other. Slice
is displaced from the axis of the beam by a distance S;. The axis of the
beam, at this point, makes an angle of @; with respect to the equilibrium
longitudinal direction.

show only relative shearing displacements; slices / and
I + 1 are sheared by a distance
As=s,,, — 5,

The S; are measured perpendicular to the local central axis
direction. The centers of the slices are separated by a dis-
tance Az along the longitudinal axis. From the elementary
definition of the shear modulus, slice / experiences a trans-
verse force along its upper face equal to

F;=84,(s;,1 —s5;)/Az. (1a)
A, is the upper face contact area of the two slices. A similar
force acts on the lower face in the opposite direction:

F,_ | =84,_,(s;_, —s;)/Az (1b)

The coordinates s; are measured transversely with re-
spect to the neutral axis of the bar. This axis may be dis-
placed from the equilibrium position and orientation by
shear and bend in earlier sections of the beam. It is impor-

tant to measure displacements in an intertial system before
invoking Newton’s second law. Hence, we write

Vie1 = Vi=58i41 — S — @Az (2)
As indicated, @, is the angle between the plane of the ith
slice and the equilibrium z direction. We can combine these

three equations to find the net transverse translational .
force on a slice and set this equal to its mass X acceleration:

m.j; = ($/Az) [Ai(yi+1 —J: + ¢;Az)
—A, =y, +¢’i—1Az)]
or
m;p; = (S$/Az) [4iic: +Yio — 2
+ (@, — @;_,)Az)
+ (4, —A4,_ )P —yi_, +¢7i—1Az)]~ 3)
Figure 2 shows the same three neighboring slices, but
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Fig. 2. The sliced loaf model of a bending beam. Three slices of an arbi-
trary bent and sheared bar are shown rotated relative to one another,
resulting in a bend in the beam in this region. Slice / makes an angle of g,
with the equilibrium direction of the beam axis. @, is the accumulated
result of all @;, i>j. A small bar of cross-sectional area dx dy and length
Az oriented along the longitudinal and located at a distance x from the
neutral axis is shown. Because of the bending, this little bar is under
compressional stress.

this time they are not sheared, but rotated with respect to
one another producing a bending of the bar. Partway out
from the neutral axis a distance x, we also show a little
section of the beam whose dimensions are dx, dy, [ = Az.
As drawn here, this little bar is subject to length strain in
the amount

Al=x(@; 11 —@i)-

It therefore exerts longitudinal forces on the i and i + 1
slices:

8f = (Al/D)Y dx dy. (4)

The net translational force exerted by all such little bars on
the two slices is zero because of the antisymmetry between
the left and right sides of the neutral axis. The net torque on
the slices does not vanish:

61 = (Yx*/Az) (@; ., — @;)dx dy. (5)
Over the total surface of the slice, this integrates to a torque
of

7= (YaRt/4A2) (@;,, — @.)- (6)

The net torque on a slice from slices above and below is
found by adding two such torques:

7, = (Y/4Az) [AiR H O -y

+ (AR} —A4;_R;_))(p; —@i_1)]. N

There is an additional torque acting on a slice. Referring
again to Fig. 1, note that the shearing force on the upper
face of the slab exerts a clockwise rotational effort. The
moment arm of this, with respect to the slab center of mass,
is Az/2. A similar torque, in the same sense, is exerted by
the shearing force from the lower slice. Combining these
two torques gives

Ts = —S{Ai[yi+1 —Yi_1 + (@ +¢i_1)AZ]
— (4, =4, )i —yi_y +¢i-—1Az)}- (8)
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We combine the torques and set the result equal to the
product of slice moment of inertia about the y axis and the
angular acceleration. Defining ®; = ¢, Az and recapitulat-
ing, we have two coupled sets of equations of motion:

.. S Ad;
yi=_<yi+1 +y,-_1 —zy, +‘_(y1_y11))

pAZ A,
s
+pAZZ (q)1_¢l—1)’ (9a)
Q’ZE(%‘ ro,_, —20,
A(4,RD)
LY TR
28
_pR2 [(J’i+1 -y + )
A4,
+(1 _A_) Pig1 =i +P) | (9b)

These two equations, together with appropriate boundary
conditions, describe the complete dynamics of the baseball
bat. In the limit of very many, very thin slices, these equa-
tions contain certain obvious combinations like
Yoy +Yi_1 — 2y, that go over into second derivatives
with respect to position z. There are also, manifestly, sever-
al first derivative terms, particularly in connection with the
changing diameter of a beam of arbitrary contour.

We use the boundary condition that the shearing force
and the torque on the endmost slices comes only from the
next inner slice, otherwise taking the forms we have given
above. That is to say, we treat the bat as a free object during
the moments of its dynamics that we study. Brody' has
pointed out, based on his measurements, that this assump-
tion seems appropriate. It is certainly correct for the larger,
club end of the bat. We will see, however, in the following,
that the results of interest are essentially independent of the
boundary condition at the handle end. Thus the assump-
tion of free end boundary conditions is no approximation at
all.

ITII. THE NORMAL MODES

The free vibrations of an elastic system are its normal
modes. Without external driving forces or clamps at the
ends, they are found from Eqgs. (92) and (9b) by assuming
a single frequency for the motion and hunting for solutions
of the resulting eigenvalue/eigenvector problem. Assum-
ing an angular frequency w, we have

Vi=— w’y i (10)
and a similar relation for the ®,’s. If we think of all the y,
and the ®, stacked into one tall eigenvector ¥ we can ex-
press Egs. (9) in the compact form

HY = — 0%, (11)

H, the “Hamiltonian” in this Heisenbergish looking equa-
tion is the matrix of coefficients taken from Eq. (9) above.
The rank of the problem is 2N, where N is the number of
slices into which the bat is imagined to be separated. Be-
cause the bat is actually a continuum for all practical pur-
poses, the number of slices must be large enough that each
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wavelength of the solution states encompases many slices.
In what follows, N was chosen to be 75. The length of the
bat was 0.864 m, so each slice was a little larger than 1 cm.
This means the results grow less trustworthy as the mode
wavelengths fall below 5 or 10 cm. This condition is well
satisfied in our calculation since the Fourier analysis is
nicely convergent, and the shorter modes contribute less to
the final results. We terminate the series at mode #20
(19/2 wavelengths), for which one wavelength comprises
eight slices.

Although all important contributions to the elastic be-
havior of the bat under ball impact conditions are satisfied
by the first 20 normal modes, it proves not to be the case
that everything of interest is exhausted by the first nontri-
vial mode as is sometimes asserted. In fact, the higher
modes make a significant and surprising contribution to
the flight of the ball.

The diagonalization of a matrix H like the one to which
we have been led, is a routine matter for most computer
systems. The Purdue Physics Department Computer
“Gibbs,” having approximately the capabilities of a VAX
780 contains the EISPACK series of routines in its FOR-
TRAN library. Similar matrix manipulating routines are
also available from IMSL (Houston, TX), and most medi-
um sized scientific facilities have such a library on line.

A wooden bat was borrowed from my son’s collection
and calipered at a series of equally spaced points along its
length. It was also weighed. It was comfortably within the
specifications for major league play; as described above,
these are none too restrictive. The length was 0.864 m, the
mass 0.921 kg, the moment of inertia 0.0433 kg m* The
material is apparently ash, the wood of choice for modern
bats. (Hickory was popular a few decades ago.) This bat
was manufactured by H&B Co. of Louisville, KY and
bears a model number BB296.

The mechanical properties of many woods have been
measured. The value for Young’s modulus of ash was ob-

Table 1. Frequencies of the first 20 normal modes.

Mode No. Frequency in Hz
1 0.0
2 0.0
3 136.8
4 465.7
5 921.4
6 1464.2
7 2068.4
8 2713.6
9 3383.4

10 4064.5
11 4753.3
12 5433.1
13 6109.9
14 6784.6
15 7446.6
16 8097.4
17 8736.0
18 9351.5
19 9936.7
20 10480.3
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tained from the Purdue Forestry Department,
Y = 1.20X 10" N/m?. The value for the shear modulus is
less reliably known. We used S = 8.8 X 10° N/m?. Fortu-
nately, the shear modulus affects the results much less than
does the compressive modulus, so its uncertainty is less
important. (If the moduli are regarded as adjustable pa-
rameters, essentially perfect agreement with experiment is
possible. See Sec. VIII.)

A “computer” bat of invented cross sections was also
treated. This imaginary bat had a somewhat thinner handle
and a more abrupt conical section tapering up to the club
portion than did the real bat. This imaginary bat differed in
no important way from the real one in its dynamics. It
served to point up the frequency sensitivity of the modes to
handle contour.

Table I gives the first 20 eigenfrequencies of the real bat.
The frequencies of the two lowest modes are Zero. These
correspond to simple transverse displacement, and to free
rotation. For the case studied, that of the free bat, there are
no restoring forces against this motion, hence the frequen-
cies must vanish. The first nontrivial mode is #3, with a
frequency of 136.8 Hz. Brody' reports a frequency of 27
Hz for the lowest mode of a clamped softball bat, otherwise
undescribed. He also finds an unclamped mode at 163 Hz.
Brody attributes this 163-Hz measurement to the simple
bending mode; since we are dealing with different bats,
there may be no conflict here. Brody’s is a softball bat,
suggesting a proportionally thinner club and thicker han-
dle than our baseball bat. (In fact, the agreement can be
made even better. See Sec. VIII.)

In Fig. 3 we display graphically the eigenvectors of the
first five nontrivial modes. (The transverse displacements
have been much exaggerated, relative to bat dimensions.)
The lowest, at 137 Hz, is the simple bend. If clamped near
the handle, this mode would go down in frequency, owing
to the much greater mass to swing about a correspondingly
longer moment arm. As we go up in frequency, the number
of nodes increases by one at each step. The oscillations tend
to be crammed into the weaker, handle portion of the bat,
but as we look at the higher modes, we see notable deforma-
tion of the thick club portion.

This series of normal modes is entirely analogous to the
harmonics of a stretched string or an organ pipe treated in
introductory physics books. Here, however, the overtones
are far from harmonic, and there are no symmetries or
regularities.

It is clear why the lowest frequencies are so sensitive to
the details of the cross-section contour. The bending
strength of a beam varies as the 4th power of the cross
section, and this is immediately reflected in a first power
dependence of the frequency.? Furthermore, the tapering
section bounds the weak, flexible handle, effectively defin-
ing the wavelengths. Hence, all the lower frequencies could
be “tuned” by adjusting the handle thickness and taper
slightly. In this paper, we do not offer any reasons for doing
such a tuning. However, were one motivated to tune the
modes, it would certainly be much less consuming of time
and lumber to do this tuning on the computer, at least ini-
tially.

IV. THE RESPONSE OF THE BAT

The calculation of the normal mode properties is an in-
teresting and amusing exercise. In this section, however,
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Fig. 3. The normal modes of a baseball bat. Seven of the lowest frequency, longest wavelength normal mode, standing wave patterns of an elastic bat are
shown. The waves have been given a high amplitude relative to the transverse dimensions of the bat in order to emphasize their shapes in the figure. Each
figure shows 75 slices displaced and rotated according to the eigenvector components y; and @, computed from the normal mode analysis. Modes # 1 and
#2 (not shown) are simple uniform transverse displacement and simple rotation in an arbitrary mixture. Mode # 3 is a simple bending; it has two nodal

points, y = 0. Mode #7 has six nodes.

we make use of these modes and show how they can be used
to determine the actual dynamics of impact between ball
and bat. To do this, it is necessary to model the impact
process. The idea is to be able to say how much of each
mode is excited by the ball impact. Then adding the effects
of all the modes, we find the behavior of the bat at any time
and any point.

The duration of the impact is known to be about 1.5 ms.*
We have assumed a parabolic shape in time for the interac-
tion force:

o =po(6/7°) (1 — )t

(and zero for t<Qor¢> 7).
The form is normalized to p,, so that

fﬂ(t)dt:po.

We will later set p, equal to the momentum change of the
hit ball.

" We also spread the contact force out along the bat
length, similarly modeling it with a parabola. We assume

(zero, of course, where this expression would be negative).
This spreads out the impact over five of the slices, weakly

(12)
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toward the edges, maximally at the central slice #,. Spread-
ing the impact is without effect on the lowest modes, but
tends to reduce the importance of the higher ones by par-
tially integrating over a greater fraction of their wave-
length. The 35 in the denominator maintains the normali-
zation of the hit to the total impulse transmitted to the ball
Po-
We now have an external force on each slice to add into
the equations of motion. Also, since these equations in their
final form, Eq. (9), were divided by the mass of each slice 7,
the force terms f; need also to be divided by pA; Az, the mass
of a slice.

We express the complete bat motion as a sum over nor-
mal modes:

V=3 4,0Y,. (14)

q

We can do this because the normal mode solutions are or-
thogonal and complete in the spatial coordinate. Now we
write the equations of motion for the time variation.

Vv, =Y 4%, =H,Y, +7’;"—
q i
fi
=S AHY, +2 (15)
; q*tij T g m,
L. L. Van Zandt 176



Now using Eq. (11) we can write more compactly

SA4Y,=—-Ywl4V, +i, (16)
q q m;

then multiply by ¥, and sum over i to obtain
Ag = — wpdg +fo, (17)

where

—1
2\1/2,.) . (18)

It is easy to verify by direct differentiation that

A, (1) = —wLJ sin(t — tf, (¢")dt". (19)
q - o0

This form is valid even during the impact process, but per-
forming the general integration produces a somewhat un-
tidy collection of trigonometric functions. In what follows,
we will mostly confine our attention to times equal to or
later than the complete impact. Hence, we can replace the
integration with the definite integral:

4, = —f,(1/a})
X [sin @, (@,TCos 0, T+ @, 7 — 2 sin ®,T)

— €08 @, t(ew, 7 sin 0,7—24+2cosw,7)].
(20)

In this expression, f, is f,, (#) with the factor #(# — 1) re-
moved.

In the final expressions, we have included one further
time dependence. We have given an exponential damping
factor to each mode. The source of this damping is the
internal friction, the intrinsic dissipation of the wood itself.
We have very little data to use for the assignment of damp-
ing parameters, but Brody’s oscilloscope traces suggest a
“Q@” of about 10. Hence, we have multiplied each A4,(2) by

an additional factor of e ~ “*”'°, This damping is indepen-
dent of and additional to that coming from the batter’s
hands. As we see below, this is a small but significant mat-
ter in the flight of the ball. It also bears on the question of
the differences between wooden and aluminum bats.

V. THE STING OF THE BAT

Now that we know the ¥, from the normal mode calcu-
lation and 4, (¢) from the time equation, we can use Eq.
(14) to find the behavior of any of the slices at any time. As
an illustration, Fig. 4 is a portfolio of figures showing the
bat at a sequence of times following impact. As in the nor-
mal mode display, the displacement amplitudes have been
exaggerated for graphic purposes. At £ = 0.0005 s, we see
the bat still in contact with the ball. By t = 0.0015 s the ball
has just completed contact. We are viewing the bat in its
own rest frame; there is neither rotation nor translation in
these views. A deformation travels away from the impact
point at 0.65 m. The center of percussion lies at 0.68 m and
the node of the first deformation wave, mode 3, lies quite
close at 0.69 m. (The conjugate point to the COP was taken
as 10 cm, approximately in between the hands.)

Note that the handle has not yet moved. The flight of the
ball is already completely determined, but the handle is
undisturbed. Hence, our assertion above that the ball dy-
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namics are independent of the boundary conditions on the
elastic modes at the handle.

In subsequent milliseconds, we see the disturbance prop-
agate from the stiff, thick portion into the thinner, more
compliant portion of the bat. It is evident, without even
checking the numerical values of the 4, that several more
modes above the simple bending of mode #3 are strongly
involved in the motion. As the impulse passes into the han-
dle, its amplitude grows, and the handle whips forward. A
right-handed batter will feel the initial slap on his left palm
and right fingers, at about 2.5 ms after the hit.

This motion also explains another oddity, well known to
baseball hitters: when a bat breaks in play, it splinters on
the catcher’s side. Insight unguided by our analysis would
suggest that upon impact the bat bends in the hitter’s hands
away from the pitcher to produce splintering on the pitch-
er’s side. Clearly, however, when struck inside of the node,
as in this example, the bat will bend concave to the pitcher.
Professional pitchers are well aware that inside pitches
yield broken bats.

We continue watching the motion, and see the handle
come back at between 4 and 5 ms to slap the opposite hand
and fingers. In an actual hit, the hands absorb this energy,
and the bat motion becomes additionally damped.

Figure 5 shows a set of images in which the ball has
struck at the “sweet spot,” in this case just past the node of
the mode #3 vibration, located at 0.69 m. As we would
have imagined, the amplitude of the handle vibration is
greatly reduced. Also shown in Fig. 5 are images of the bat
struck an equal distance to the distal side of the node. Here
we see the initial handle swing is back toward the catcher
and smaller in amplitude.

VI. THE FLIGHT OF THE BALL

We can also use our knowledge of the A, () to study the
flight of the ball and how it may be influenced by the vibra-
tions. In this we find some interesting surprises.

In what follows, we have assumed a ball pitched at 40
m/s = 89 mph. The batter swings, producing a center of
mass velocity of 16 m/s and an angular velocity of 34 rad/s,
approximately equivalent to the bat pivoting around the
handle at the instant of impact. These parameters are com-
fortably within the range of professional performance, but
outside the capabilities of most little leagures or amateurs
at a picnic.

The theory of ball recoil involves three conditions: (1)
conservation of momentum, (2) conservation of angular
momentum, and (3) the coefficient of restitution. The first
two are straightforward; the third requires some discus-
sion.

If the mass of the ball is m, and the mass of the bat is M,
and the prehit ball velocity is v, and the prehit center of
mass bat velocity is u, then the momentum condition gives

my, + Mu=mv' + Mu'; (21)
v’ is the speed with which the hit leaves the plate, #' is the
final bat speed. Of course, v, will be negative.

The bat will have an angular velocity € leading to an
angular momentum 7, about the bat center of mass.
Likewise, the ball has initial angular momentum mv, r, ; r,
is the impact point measured from the center of mass at R.
Thus the second condition
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Fig. 4. The elastic response of the bat after striking the ball. Struck 4-cm proximally to the #3 vibration node, the bat undergoes a complex pattern of
bends propagating from the impact point into the handle, eventually settling down to a #3 mode vibration after 4-5 ms. In these figures, the impact point
was on the top of the bat. In the first two images, the amplitude was exaggerated an additional 2.5 X.

mr,v, + IQ =mr v + IY. (22)

The coefficient of restitution is defined as the (negative)
ratio of relative speeds of two objects after and before colli-
sion. It is a convenient quantity to work with because, un-
like the kinetic energy, it does not depend on the choice of
coordinate frames. The ball/bat collision is a complex
event in which a severely deformed ball dissipates a sub-
stantial fraction of its energy among the woolen threads in
its interior. Major league specifications call for a coefficient
of restitution of 54.6 + 3.2% for an 80-mph collision with a
wooden barrier. The game itself is very hard on the ball,
and they are changed frequently as the COR degrades. (A
summer’s play in the major leagues, about 2000 games,
requires well upwards of 100 000 baseballs. )

The relative speed before collision is

s;=u+rQ)—v,. (23)
After colliding, the relative speed is
sp= (U 47 4 Vs ) — v. (24)
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The quantity v,,, is the speed of the bat surface in the bat
rest frame arising out of its elastic response to the hit; it is
the time derivative of the displacements we computed in
the description above of Figs. 4 and 5.

We use Egs. (23) and (24) together with the official
COR value to obtain a third equation on the various speeds
¥, v, and €)' characterizing the system motion after colli-
sion. To find v,,,, we use our knowledge of the 4, (#)—
actually their time derivatives taken from Eq. (20)—eval-
uated at ¢ = 0.0015 s. We sum over the first 20 normal
modes having amplitudes 4, (¢) to find y, and its velocity
as the collision ends.

The quantity p, in the expression for the interaction
force, Eq. (12), is set equal to the change in ball momen-
tum:

Do =m(v; —V'). 25)

The system of equations can be readily solved for the final
ball speed v’ as a function of the point of impact along the
bat (and the various initial parameters):
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Fig. 5. Views of the elastic bat 1.5, 2.5, and 6 ms after impact with a ball at the node of mode # 3. The times were chasen to coincide with the maxima of the
handle distortions appearing in Fig. 4. The absence of mode # 3 has greatly reduced the motion of the handle. This result, well understood by every child
on the playground, provides one definition of the “sweet spot.” Three more figures show the bat configuration for a bat striking the ball 4 cm distally to the
# 3 mode “sweet spot.” The phase of the bending motion is reversed, relative to Fig. 4, and the ultimate handle motion somewhat reduced in amplitude.

’

_ MI(1+e)u + (m — Me — amM)Iv, + MIQ(1 + e)r, + Mmv, 7?

(26)

I(im + M — mMa) + Mmr;

In this equation, we have dropped the com subscript from
I, ,and ais bat surface velocity divided by p,, i.e., v, per
unit impulse. ‘

Besides simply plotting this equation, one of the very
interesting things to do is consider the several contribu-
tions to a. Figure 6 shows the recoil speed of the ball as a
function of impact point along the bat for three different
cases. The starred curve sets @ = 0; this means the bat is
being treated as a perfectly rigid club. The dashed line
shows a bat whose only elastic mode is #3, the simple
bend. Note that this curve coincides with the rigid club
model for an impact at the #3 node. To either side of this
point, the bat can respond elastically, being somewhat
more “mushy” in collision, and we see that the ball speed is
correspondingly reduced. Hit at the node, the elastic bend
can not be excited, and so the bat is equivalent to a rigid
structure. Adair has exhibited a curve similar to this one
based on an energy argument.*

The solid line in Fig. 6 shows the complete calculation
using 20 elastic modes. The contribution of mode 20 to a is
less than 0.1% relative to the total. The frequency of mode
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#5 is, as we see from the table, over 900 Hz, and the re-
maining 15 are of course even higher. This means that these
higher modes can and do reverse their velocity at the im-
pact point while the ball is still in contact.

The effect of higher modes on the effectiveness of the bat
is readily apparent from the figure. The “sweet spot,” de-
fined as the maximum ball speed point, is slightly shifted
relative to the other “sweet spots,”® the center of percus-
sion—COP—at 68 cm and the #3 node at 69 cm. The
maximum ball speed is increased even over the rigid club
model, albeit by less than 1%.

The major effect occurs for a ball hit inside of the sweet
spot. For a collision only 10 cm more proximal than opti-
mum, the # 3 mode would degrade the flight speed by 5%
relative to the rigid club. In a vacuum model of the ball
trajectory, this small difference costs 10%, or 42 ft of trav-
el. (The ball velocity, again in vacuo, yields a 420-ft hit.)
Given air resistance, that would not be over the center field
wall. In any event, this sagging of the velocity curve would
mean 40 ft shallower that the outfielder could stand and 40
ft less he would have to throw in order to hold the runners
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90.00 Ball speed ofter impact. Solid line: Elastic bat.
Starred line: Perfectly rigid bat
Damping: Q = 10. Dashed line: First elastic mode only.
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Fig. 6. The flight of the ball. The final ball recoil velocity is shown as a
function of impact point along the length of the bat. In this graph, the ball
crosses the plate with a speed of 40 m/s, and the bat meets it squarely with
a center-of-mass speed of 16 m/s and an angular velocity of 34 rad/s. The
parameters reflect major league but not superhuman performance. At the
peak of the curve, the ball would travel 460 ft in a vacuum if the angle of
elevation were an optimal 45°. The solid curve shows the performance to
be expected from the elastic, wooden bat described in the text. The dashed
curve shows the effect of suppressing all modes above # 3, simple bend-
ing. The starred curve shows the performance expected for an infinitely
rigid club having otherwise identical properties.

after a catch. In baseball, a game of very narrow margins,
small does not mean insignificant. The other elastic modes
restore about half of this degradation, hence they represent
an important part of the bat performance factor.

Finally, the shape of Fig. 6 shows quantitatively how
important to the batter it is to strike the ball with the outer
end of the bat. As measured from the center of percussion,
the ball speed is considerably more forgiving for hits to the
outside than to the inside; mentioned before was the danger
to the pitcher in giving the batter a good outside pitch.

Aluminum bats have all-around higher stiffness and cor-
respondingly higher normal mode frequencies. All other
things being equal, this effect alone would give aluminum
bats a substantial edge over ash for the hitter, fully justify-
ing their exclusion from the major leagues. All other things
are not equal, however, and the aluminum bat needs a sepa-
rate calculation of its own to be correctly compared to its
wooden competition. (Ball velocity is probably not the rea-
son for excluding aluminum from the majors. Rather the
real reason seems to be the failure of aluminum to break on
hitting an inside pitch.®)

VII. CONCLUSIONS

We have seen that the theory of elasticity presented gives
a comprehensive description of the performance of a wood-
en bat. The elastic normal modes contribute significantly to
the range of the flight of the ball, both negatively and posi-
tively, depending on how the ball is hit. While we have not
fully explored the question here, the normal modes can be
strongly influenced by relatively minor changes in the
cross-sectional contours of the bat. Since the normal mode
frequencies can be readily measured, it is possible to ima-
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gine tuning the bat to produce optimum hitting perfor-
mance. We have not, however, considered how shifts in the
center of mass would influence the ability of the batter to
accelerate the bat to maximum velocity. Nor have we con-
sidered the optimum mix of linear and rotational motion
for which the batter should strive. (It is likely that 100 +
years of empiricism in the game have already produced a
shape close to the optimum. )

We have seen an indication of why the batting character-
istics of a metal bat may be superior to wood, but this topic
also was not fully explored.

We have seen why bats break on the catcher’s side. We
have also shown that the hitting performance is indepen-
dent of boundary conditions on the handle, and may be
safely studied using the free bat model.

Finally, we have displayed an interesting application of
elasticity and normal mode theory to a familiar object and
had considerable fun in doing so. And that, after all, is the
central purpose of baseball, and among the professionals,
of physics as well.

VIIL. ADDED NOTE

After submission of this manuscript, the author visited
the laboratory of Uwe Hansen at Indiana State University,
and the bat in question was brought along. Professor Han-
sen performed a harmonic analysis of the bat modes, mea-
suring eight frequencies spanning the range of his appara-
tus. If the handbook value for Young’s modulus used above
is increased by 35% to 1.62X 10'° N/m? and the shear
modulus is increased by almost as much to 1.05x 10°
N/m?, the theoretical frequencies and the measured fre-
quencies match to the precision of the measurement. Spe-
cifically, see Table II.

The curve of frequency versus mode number departs
substantially from the parabola predicted by the theory ofa
uniform bar.? That the theory follows this deviation as well
as it does suggests that it is handling the nonuniform cross
section well. The adjustments to the shear modulus change
the higher frequencies by about 10-15 Hz, the low frequen-
cies by 1 Hz or less. This difference reflects the increasing
amount of shearing motion in the higher eigenvectors. As
mentioned in the Introduction, the shear is dropped entire-
ly from the conventional, analytic theory of the vibrating
bar.

R. Adair, reading this manuscript before publication,
has objected to some of the parameter values. Referring to
his book,* Fig. 4.6, he feels the contact time should be re-

Table I1. Theoretical frequencies and the measured frequencies matched
to the precision of the measurement.

n Theoretical Experimental in Hz
3 171.5 170
4 562.2 560
5 1087.5 1100
6 1709.8 1720
7 2398.8 2410
8 3128.7 3130
9 3883.8 3880
10 4651.1 4630
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110.00 ~ Ball speed ofter impact. Solid line: Elastic bat.

Starred line: Perfectly rigid bat.

Damping: Q@ = 10. Dashed line: First elastic mode only.
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Fig. 7. Performance curve as in Fig. 6, but with modified parameters:
contact time = 0.0006 s, bat COM velocity = 24 m/s, bat rotational
speed = 51 /s, COR = 0.456. See Sec. VIII.

duced to 0.0006 s. He also argues for a smaller coefficient of
restitution, and higher bat speed parameters. To investi-
gate these matters, we increased the bat speed parameters
by 50% (increasing the bat energy by over 100%),
dropped the COR to 0.456, and cut the contact time to
0.0006 s. Figure 7 shows the results of these parameter
changes. The higher frequency modes have become slightly

less effective at giving back what the bending mode takes
away on an inside hit but slightly more useful in the region
near the sweet spots, and the top speed is increased to 102
mph at maximum.
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THE DANGERS OF STUDYING STATISTICAL MECHANICS

Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in 1906, by
his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to
study statistical mechanics. Perhaps it will be wise to approach the subject cautiously.

David L. Goodstein, States of Matter (Prentice-Hall, Englewood Cliffs, NJ, 1975; reprinted by
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