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Abstract
The trajectory of a baseball moving through the air is very
different from the one we teach in our introductory classes,
in which the only force is that due to gravity. In reality, the
aerodynamic drag force (which retards the motion) and the
Magnus force on a spinning baseball (which causes the ball
to curve) play very important roles that are crucial to many
of the subtleties of the game. Despite their importance, our
knowledge of how these forces affect the flight of the base-
ball has been qualitative at best. Recently, however, new
tools have been developed for measuring accurate baseball
trajectories during an actual game. These tools include both
video tracking (the PITCHf/x and related systems) and the
TrackMan Doppler radar system. In this article, I will dis-
cuss these new tools and give some examples of what they
are teaching us about the game of baseball.

1 Introduction
The flight of the ball plays an integral role in the game

of baseball. Whether the ball is pitched by the pitcher,
struck by the batter, or thrown by a fielder, the physics that
governs the flight involves the same forces. If these are
known and the initial conditions are given, the full trajec-
tory of the ball can be predicted by solving the equations of
motion. So, what are the forces on a baseball as it travels
through the air? Of course there is the downward pull of
gravity, which is typically the only force treated in intro-
ductory physics courses. In real life, however, gravity must
be supplemented with the two aerodynamic forces of air
drag ~FD and the Magnus force ~FM , the latter arising when
the ball is spinning. The conventional way to parametrize
the aerodynamic forces is as follows:

~FD = −π

2
ρR2CDv2v̂

~FM =
π

2
ρR2CLv2(ω̂ × v̂) , (1)

where CD and CL are the drag and lift coefficients, respec-
tively, ~v is the velocity vector, ~ω is the spin vector, R is
the radius of the ball, and ρ is the air density. The direc-
tion of the drag is opposite to the instantaneous velocity
vector, so it slows the ball without changing its direction.
The direction of the Magnus force is perpendicular to both
the velocity and spin vectors, so it only changes the direc-
tion of the ball. A convenient mnemonic is that the Mag-
nus force points in the direction in which the leading edge
of the rotating ball is turning. So, for example, for a ball
moving horizontally with backspin, the Magnus force is di-
rectly up. As we will see in the examples that will be pre-
sented below, the aerodynamic forces play important and
often subtle roles in the game of baseball.

Although not the primary focus of this paper, we start
by reviewing briefly the current state of our knowledge of
CD and CL. New measurements of CD for a variety of
sports balls are given by Kensrud and Smith.[1] For a base-
ball, CD is approximately 0.50 for speeds below about 40
mph. At some higher speed, it undergoes a “drag crisis” as
the air flow in the boundary layer makes a transition from
laminar to turbulant, resulting in a drop in CD to about
0.30 at a speed of around 90 mph. The range of speed over
which the drag crisis occurs is not known with great preci-
sion, as different experiments seem to not agree. At 90 mph
and typical air densities, the drag force is about equal to
the weight of the ball. Many interesting questions abound,
such as the dependence of CD on the seam orientation or
the spin. One interesting feature is that most trajectories in
baseball fall right in the region of the drag crisis.

The lift coefficient is expected to be a function of the
spin parameter S = Rω/v. Some recent measurements
and a review of earlier measurements are given by Nathan.[2]
The existing data are reasonably well described by the re-
lation

CL =
2.5S

1 + 5.8S
. (2)

For low values of spin, CL has a linear dependence on S,
vanishing when the spin vanishes. For a baseball moving at
v=90 mph and spinning at ω=1800 rpm–values quite typi-
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cal of both pitched and batted balls–S=0.22 and CL=0.24;
if the spin is perpendicular to the velocity, the magnitude of
the Magnus force is approximately 0.8 of the weight of the
ball. For high values of S, CL asymptotically approaches
0.43.

The fact that the drag and Magnus forces can be ap-
preciable fractions of the weight suggests that neglecting
the aerodynamic forces in trajectory calculations is not a
very good approximation, as demonstrated in Fig. 1. This

Figure 1: An example of a fly ball trajectory (solid curve),
with the initial conditions shown. The dots show the loca-
tion of the ball in 0.5-sec intervals. The other curves are
the trajectories with the same initial conditions with nei-
ther drag nor Magnus (short dashed) and with drag but no
Magnus (long dashed).

fly ball was hit with initial parameters taken from an actual
home run: launch velocity of 112 mph, vertical launch an-
gle of 27◦, and backspin of 1286 rpm. Such a ball would
carry nearly 700 ft in a vacuum but in reality only carries
about 430 ft. Whereas the vacuum trajectory is symmetric
about the apex, the effect of drag is to reduce the horizon-
tal speed so that the ball travels farther prior to than after
the apex. This particular feature is well known to base-
ball players, even though they are probably not aware of
the physics that causes it. Also shown is a trajectory with
drag but no Magnus force, which in this case is mainly
in the upward direction, opposing gravity. Relative to the
no-Magnus trajectory, the ball rises higher, stays in the air
longer, and travels farther, although the latter effect is only
about 50 ft.

2 The New Technologies

2.1 The f/x Video-Based Systems
The f/x systems are based on standard video technol-

ogy. Most prevalent is the PITCHf/x system,[3] which is
installed in all Major League Baseball (MLB) ballparks and

has been used since the start of the 2007 season to track ev-
ery pitch in each MLB game. The system consists of two
60-Hz cameras mounted high above the playing field with
fields of view that cover most of the region between the
pitching rubber and home plate and with roughly orthog-
onal principal axes. Proprietary software is used to iden-
tify the camera coordinates of the baseball in each image,
which are then converted to a location in the field coordi-
nate system. The conversion utilizes the camera transfor-
mation matrix, which is determined separately using mark-
ers placed at precisely known locations on the field. De-
pending on the details of each installation, the pitch is typ-
ically tracked in the approximate range y=5-50 ft, result-
ing in about 20 images per camera for each pitch, each
with measurement precision of order 0.5 inch. Each trajec-
tory is fitted using a constant-acceleration model, so that
nine parameters (9P) determine the full trajectory: an ini-
tial position, an initial velocity, and an acceleration for each
of three coordinates. Simulations have shown that such
a parametrization is an excellent description of trajecto-
ries for most pitches.[4] The essential physics is that the
aerodynamic forces on the ball, while not constant, change
slowly enough and the flight path is short enough that the
9P model provides an excellent description of the actual
trajectory. Using the 9P fit, various quantities of interest to
both physicists (e.g, drag and lift coefficients) and baseball
analysts (e.g., release speed, home plate location, move-
ment) can be determined. The HITf/x system utilizes the
same cameras to track the initial trajectory of batted balls,
including the batted ball speed, vertical launch angle, and
horizontal spray angle. The FIELDf/x system is an am-
bitious extension that tracks essentially everything on the
playing field: the fielders, the base runners, the umpires,
and the full trajectory of the batted baseball.

2.2 TrackMan Doppler Radar
TrackMan is a phased-array Doppler radar system that

is installed in a number of MLB ballparks. The system is
usually mounted high above home plate and has a field of
view that covers most of the playing field. A single antenna
transmits at approximately 10.5 GHz. The signal reflected
by the baseball is detected in a 3-antenna array, allowing
the determination of the Doppler velocity and angular lo-
cation of the baseball in the radar coordinate system. To-
gether with an initial location, that is sufficient to track the
full trajectory of both pitched and batted baseballs. For
pitched baseballs, the measurement precision is compara-
ble to that of PITCHf/x. The precision for batted balls is
not known. Unlike PITCHf/x, the TrackMan data are not
publicly available, although some MLB teams are willing
to share data with researchers.
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3 Studies of Pitched Baseballs
The great lefthanded pitcher Warren Spahn once said,

“Hitting is timing. Pitching is upsetting timing.” In this
section, I will use the publicly available PITCHf/x data
from actual MLB games[5] to explore some of the ways
that pitchers can upset the timing of batters.

Given the variety of possible pitches that can be thrown
(e.g., fastballs, curveballs, sliders, etc.), one way to upset
the timing of a batter is for the trajectory of each pitch to
be nearly identical for as long as possible, giving the bat-
ter little opportunity to recognize and react to the differ-
ent pitches. There is a perception among practitioners of
the game that a pitched ball can deviate sharply from a
straight line just before reaching the batter, giving rise to
the concept of “late break.” From a purely physics point
of view, late break is a fiction, since it is not possible to
change rapidly the trajectory of a pitched baseball without
enormous forces acting on it. So, it is a fair question to
ask why perception is different from reality, a topic I ex-
amine in Fig. 2. Shown is a bird’s eye view of an actual
pitch (the solid curve) thrown by the great New York Yan-
kee pitcher Mariano Rivera. The dotted curve is a straight
line extrapolated from the initial velocity vector. The two
curves are virtually indistinguishable until about 20 ft from
home plate, at which point the batter has already decided
where he thinks the ball will end up and whether or not to
swing. The two trajectories deviate by about 0.5 ft at home
plate, which is more than enough to confound the batter,
who swears the solid curve broke sharply at the last mo-
ment. Clearly it did not.
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Figure 2: An example of “late break.”

Another way a pitcher can upset the timing of the batter
is by varying both the speed and the movement of the pitch.
The movement is defined as the deviation of the pitch from
a straight line trajectory, with the effect of gravity removed.
For most pitches, it is determined by the magnitude and ori-
entation of the spin axis. An example is shown in Fig. 3,
in which the direction of the movement and release speed
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Figure 3: Polar plot showing the pitch repertoire of Jon
Lester (blue) and knuckleball pitcher Tim Wakefield (red).
The radial coordinate is the release speed and the angular
coordinate is the direction of the movement, as viewed by
the catcher.

for a few hundred pitches thrown by Boston Red Sox left-
hander Jon Lester are shown as the blue points in a scatter
plot, as viewed by the catcher. The spin axis is the move-
ment angle plus 90◦ (see Eq. 1). For Lester, as with most
MLB pitchers, the plot shows distinct clusters that serve as
signatures for each of the five pitches in his repertoire. For
example, the cluster at 95 mph and 65◦ (spin angle=155◦,
or primarily backspin) is his primary pitch, the so-called
four-seam fastball, breaking primarily upward and slightly
away from a right-handed batter. The cluster near 77 mph
and 225◦ (spin angle=315◦) is his curveball, breaking down
(due to topspin) and toward a right-handed hitter. Now
compare with the red points, the pitches thrown by recently
retired Red Sox righthander Tim Wakefield, who occasion-
ally throws fastballs ( 73 mph and 120◦) and curveballs
(60 mph and 315◦). However, Wakefield’s primary pitch
is the knuckleball, shown as the amorphous ring at about
66 mph. Whereas the movement of “ordinary” pitches is
predictable, the movement of a kunckleball is not.

Given the unusual nature of the knuckleball, it is inter-
esting to examine its behavior in more detail. It is usually
thrown at a speed significantly lower than that of ordinary
pitches and with very little spin. The lack of spin means
that the knuckleball does not experience the Magnus force
that is responsible for the movement on ordinary pitches.
But it does experience movement, as seen in Fig. 3. Wind
tunnel experiments have shown that the movement is due to
the disruption of the air flow over the seams of the ball.[6]
The seemingly erratic movement has led to the perception
that the knuckleball trajectory is not smooth but undergoes
abrupt changes of direction. This is an issue that can be
addressed with the tracking data. To do so requires having
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access to the raw tracking data rather than the 9P fit, since
we do not know how well the constant-acceleration model
fits the actual data.

Therefore raw data were obtained for several games
from the 2011 MLB season. Here I will give a detailed
analysis for one game in which 278 pitches were thrown,
of which 77 were knuckleballs. Each trajectory was fit to a
smooth function and the root-mean-square (rms) deviation
of the data from that function was determined. The essen-
tial idea is that the smaller the rms, the better the smooth
function describes the actual data. Rather than use the con-
stant acceleration function, a more exact model was used
in which the aerodynamic forces are proportional to the
square of the velocity. A nonlinear least-squares fitting pro-
gram was used to adjust the parameters to minimize the rms
value. The result of applying this procedure is presented in
Fig. 4.

Figure 4: Distribution of rms values for normal (blue) and
knuckleball (red) pitches. The nearly parallel linear con-
tours of these samples indicate that they each have a Gaus-
sian distribution with the same standard deviation but with
the mean value slightly larger for knuckleballs.

The rms value for each of the 201 ordinary pitches (blue)
and 77 knuckleball pitches (red) is plotted as a function of
the percentage of pitches in each sample having a smaller
rms value. The horizontal axis is such that samples follow-
ing a Gaussian distribution appear as straight lines, with
the central value at 50% and standard deviation propor-
tional to the slope. This plot shows that the distribution
of rms values is very similar for the ordinary and knuckle-
ball pitches, each being approximately Gaussian with about
the same standard deviation, but with the mean value for
knuckleballs (0.33 inch) only slightly larger than that for
ordinary pitches (0.30 inch). If we take the mean value for
ordinary pitches as a measure of the statistical precision of
the tracking data (approximately 0.3 inch), then the slight
increase in the knuckleball values suggests that the latter
pitches deviate from “smoothness” by at most 0.15 inch.
The conclusion is that within the precision of the tracking

data, knuckleball trajectories are just as smooth as those of
ordinary pitches, thereby disproving the common percep-
tion.

4 Studies of Batted Baseballs
I now want to turn to a study of batted baseballs. Un-

fortunately, full trajectories of batted baseballs from MLB
games are not yet available for analysis. However, two ex-
tremely useful pieces of information are more readily avail-
able: the initial velocity vector ~v0 from either the video or
radar tracking systems; and the landing point ~Rf and flight
time T , as determined either from the radar tracking or
from direct observation, the latter only for batted balls that
clear the fence for a home run.[7] Interestingly, this partial
information is sufficient to place very tight constraints on
the full trajectory, as demonstrated in Fig. 5. The data for
the full trajectory shown in the figure come from a dedi-
cated experiment in which baseballs were projected using
a pitching machine and tracked using a portable version of
the TrackMan system. The first 0.5 sec of the trajectory
were used to determine ~v0, while ~Rf and T were directly
measured by the tracking system. The trajectory was mod-
eled using Eqs. 1-2, with three free parameters adjusted to
fit ~Rf , evaluated at the measured T : a constant drag coeffi-
cient CD and the backspin ωb and sidespin ωs components
of the spin vector. The spin components are both perpen-
dicular to ~v0, with ωb and ωs lying in the horizontal and
vertical planes, respectively. The curve in Fig. 5 was ar-
rived at by this procedure. The closeness of the curve to
the actual data over the full range of the trajectory demon-
strates the point made above. It also shows the utility of
the simplified model used in the analysis. Simulations of
this procedure show that T determines ωb; the horizontal
deflection determines ωs; and the total distance determines
CD. This procedure will be used in the some of the discus-
sion that follows.
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Figure 5: A fly ball trajectory measured with TrackMan
(points). The curve is a fit to the data in which only the
data to the left of the dashed line plus the landing point and
flight time were used to constrain the parameters.
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The first question I address is the dependence of fly ball
distance on the initial speed v0 and vertical launch angle θ.
A total of 1257 batted balls were analyzed, using Track-
Man from MLB games in St. Louis from 2009. The results
are shown in Fig. 6, in which the fly balls are separated into
10 mph and 5◦ bins and mean values are taken for the range
in each bin. Some interesting features emerge from the fig-
ure. First, the optimum θ is about 30◦, which is consid-
erably smaller than the vacuum value of 45◦. Second, the
range depends on v0 approximately linearly, with a slope
of about 5 ft/mph; in vacuum the dependence is quadratic.
Finally, a ball hit with v0=102.5 mph at and θ=30◦ will
carry about 405 ft. These results are in accord with expec-
tations based on calculations of trajectories using reason-
able models for CD and CL, and it is nice to see that they
are confirmed by actual data.
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Figure 6: Dependence of fly ball distance on the vertical
launch angle for different 10-mph ranges of v0, with the
central value indicated in the legend.

Next, I investigate the effect of temperature and alti-
tude on fly ball distances. For this study, I analyze 8800
home runs from the 2009-10 MLB seasons, using ~v0 from
HITf/x and direct observation of ~Rf and T . The fitting pro-
cedure described at the beginning of this section is applied
to each home run to determine the average CD and the two
spin components, using an air density appropriate for the
known temperature and elevation. Then for each home run,
two new trajectories are calculated using the same ~v0, CD,
and spin: one in which the temperature is set to 72.7F, the
average value for the full data set, and another in which the
elevation is set to sea level. For each of these a new value
of the range is determined. We denote by ∆R the differ-
ence between the actual and new value of range. In such
a manner, we can determine ∆R as a function of temper-
ature or elevation, and these results are shown in Fig. 7.
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Figure 7: Dependence of home run distance on temperature
(top) and elevation (bottom). The top plot is color-coded by
vertical launch angle. The bottom plot displays the actual
distance vs. the sea level distance for sea-level ball parks
(blue) and Coors Field in Denver (red).

In the top part, the linear dependence of ∆R on tempera-
ture for a given θ is evident, with the slope increasing with
larger θ. The average slope, corresponding to the optimum
launch angle of 30◦, is 2.5 ft/10F, so that a long fly ball will
carry about 15 ft farther on a hot summer day at 100F than
on a cold spring day at 40F. In the bottom figure, the ac-
tual distance R1 is plotted versus the sea-level distance R2.
The blue points are those for ballparks within 200 ft of sea
level, so the data is essentially a line of unit slope passing
through the origin. The red points are those for Coors Field
in mile-high Denver, for which there is also a line of unit
slope but displaced higher by about 26 ft., from which we
conclude that fly ball distances increase by about 5 ft for
each 1000 ft of elevation.

Finally I address the question of how well the initial
velocity vector ~v0 determines the landing point ~Rf . In vac-
uum, of course, ~v0 is completely sufficient to determine
~Rf . The actual situation is more complicated due to the
aerodynamic forces. The ideal tool for making such a study
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is TrackMan. Unfortunately there are not sufficient data
freely available from that system for such a study. Instead,
I will use the data from the 8800 home runs from 2009 and
2010, the same data used to investigate the dependence of
a fly ball distance on elevation and temperature. The basic
idea is to place a narrow cut on v0 and θ and plot the re-
sulting distribution of R∗f , which is the distance expected
with the same initial conditions at the standard air den-
sity at sea level and 72.7F. An example is given in Fig. 8
for which the restrictions were 99 ≤ v0 ≤ 101 mph and
26.7◦ ≤ θ ≤ 30.7◦. Shown is a scatter plot of the in-
ferred CD values versus the total distance R∗f , along with
a histogram of R∗f showing that the spread of distances is
amazingly large, approximately 40 ft FWHM. It is natural
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Figure 8: Plot of CD vs. R∗f with 99 ≤ v0 ≤ 101 mph and
26.7◦ ≤ θ ≤ 30.7◦. The dotted line is a linear fit and shows
clearly the correlation between CD and R∗f . The histogram
is the projection onto the R∗f axis.

to ask why this is so, keeping in mind that the distances
have already been normalized to standard temperature and
elevation. One clue comes from the inferred CD values
for which the FWHM is also large, about 20% of the mean
value. Moreover, there is a clear correlation between and
CD and R∗f , with larger distances associated with reduced
drag. On the other hand, no such correlation is found be-
tween ωb and R∗f , suggesting that variation in backspin
does not account for the variation in distance. So, why does
the baseball “carry” better in some instances than in others?
I offer two possible reasons. First, the effect of wind, while
not explicitly included in the fitting procedure, is implicitly
taken into account with an elevated or reduced CD for an
in-blowing or out-blowing wind, respectively. Second, it is
possible that there are variations in CD from one baseball to
another due to subtle differences in the surface roughness.
Neither possibility can be ruled out in the present analy-
sis. Interestingly, a similar variation in CD is observed
from pitched baseballs in ballparks with both PITCHf/x
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Figure 9: Plots of CD for pitched baseballs determined
from TrackMan vs. those determined from PITCHf/x.

and TrackMan installed, as shown in Fig. 9. Over a narrow
range of release speeds, the inferred CD for each system
is approximately normally distributed with rms=0.033, due
in part to random measurement noise. However, the values
measured by the two independent systems are highly cor-
related, suggesting that a large part of the spread (0.028)
is due to a common feature of the two systems rather than
measurement noise. This analysis lends support to the no-
tion that there is a real variation in CD values over and
above measurement noise. A controlled experiment is in
the planning stage to study further this variation, with the
goal of distinguishing wind from surface effects.

5 Summary
The new tracking systems that are used in MLB ball-

parks have provided a wealth of information about baseball
aerodynamics that is teaching us much about how the game
of baseball is played. A few examples have been presented
in this article.
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