# Pitch $f / x$ Nine Parameter Trajectory Model Fitting 

R. Pendleton<br>Sportvision LLC

November 26, 2011

## 1 The Pitchf/x Measurement System

Each pitch is viewed by two cameras whose video is analyzed by a computer. The computer time stamps each frame of video and processes them to find blobs in the image. The result of each image is then a measurement consisting of time, and screen position. These data are further analyzed to generate a trajectory model for each pitch.

### 1.1 The Data and Model

The data for a pitch consists of a set of screen pts, $\mathbf{s}^{\prime}{ }_{i}$, at time, $t_{i}$ from a camera with parameters, $\lambda$. With the two camera denoted by $A$ and $B$ the data can be notated as:

$$
\begin{align*}
\mathbf{d}_{A}^{\prime} & =\left\{\left(t_{A_{i}}, \mathbf{s}_{A_{i}}^{\prime}\right), \lambda_{A}\right\}_{C a m A} \\
\mathbf{d}_{B}^{\prime} & =\left\{\left(t_{B_{j}}, \mathbf{s}_{B_{j}}\right), \lambda_{B}\right\}_{C a m B} \tag{1}
\end{align*}
$$

The first thing we do to the measured blob data eq (1) is convert from distorted screen pixels to undistorted screen pixels. We use a radial distortion model the details of which are not given here. The result is a set of data consisting of undistorted pixel locations and time from two cameras:

$$
\begin{align*}
\mathbf{d}_{A} & =\left\{\left(t_{A_{i}}, \mathbf{s}_{A_{i}}\right), \lambda_{A}\right\}_{C a m A} \\
\mathbf{d}_{B} & =\left\{\left(t_{B_{j}}, \mathbf{s}_{B_{j}}\right), \lambda_{B}\right\}_{C a m B} \tag{2}
\end{align*}
$$

We want to fit a constant acceleration trajectory model to the data. The model we will use is given by

$$
\mathbf{x}_{M}(t)=\left(\begin{array}{c}
X_{o}  \tag{3}\\
Y_{o} \\
Z_{o}
\end{array}\right)+\left(t-t_{o}\right)\left(\begin{array}{c}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right)+\frac{1}{2}\left(t-t_{o}\right)^{2}\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right)
$$

Where for now we take $t_{o}$ to be the minimum of all the values contained in the data eq (2). We can write the above model as a function of $t$ which depends on the nine parameters $\mathbf{P}_{9 P}=X_{o}, Y_{o}, Z_{o}, V_{x}, V_{y}, V_{z}, A_{x}, A_{y}, A_{z}$. This model is referred to as the 9P model.

### 1.2 Mathematical Formulation of Problem

The undistorted screen pixels, $s_{i}^{\prime}$, are images of 3D world points - the location of the baseball at specific times along the pitch trajectory. The relationship between 3D points and undistorted screen points is well modelled using the pin hole camera model in combination with a rigid body transformation. Using homogeneous coordinates allows the composition of these two transformations as matrices which results in a $3 \times 4$ matrix M relating homogeneous 3D world points to homogeneous 2D undistorted screen points [1]:

$$
\begin{align*}
k\left(\begin{array}{c}
s_{x} \\
s_{y} \\
1
\end{array}\right) & =\mathrm{M}\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right) \\
k\left(\begin{array}{c}
s_{x} \\
s_{y} \\
1
\end{array}\right) & =\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right) \tag{4}
\end{align*}
$$

where $k$ is an arbitrary overall scale factor.
Now we combine the world to screen transform of eq (4) with the 9P model eq (3) and the data eq (2) to generate an equation relating 3D points along a 9P model trajectory to measured screen data which have been undistorted:

$$
\begin{equation*}
\binom{s_{x_{i}}}{s_{y_{i}}}=\binom{\frac{m_{11} X\left(t_{i}\right)+m_{12} Y\left(t_{i}\right)+m_{13} Z\left(t_{i}\right)+m_{14}}{m_{31} X\left(t_{i}\right)+m_{32} Y\left(t_{i}\right)+m_{33} Z\left(t_{i}\right)+m_{34}}}{\frac{m_{21} X\left(t_{i}\right)+m_{22} Y\left(t_{i}\right)+m_{23} Z\left(t_{i}\right)+m_{24}}{m_{31} X\left(t_{i}\right)+m_{32} Y\left(t_{i}\right)+m_{33} Z\left(t_{i}\right)+m_{34}}} \tag{5}
\end{equation*}
$$

which we can re-arrange into the matrix equation:

$$
\left[\begin{array}{ccccccccc}
\alpha & \alpha \Delta t_{i} & \alpha \frac{\Delta t_{i}^{2}}{2} & \beta & \beta \Delta t_{i} & \beta \frac{\Delta t_{i}^{2}}{2} & \gamma & \gamma \Delta t_{i} & \gamma \frac{\Delta t_{i}^{2}}{2}  \tag{6}\\
\alpha^{\prime} & \alpha^{\prime} \Delta t_{i} & \alpha^{\prime} \frac{\Delta t_{i}^{2}}{2} & \beta^{\prime} & \beta^{\prime} \Delta t_{i} & \beta^{\prime} \frac{\Delta t_{i}^{2}}{2} & \gamma^{\prime} & \gamma^{\prime} \Delta t_{i} & \gamma^{\prime} \frac{\Delta t_{i}^{2}}{2}
\end{array}\right]\left(\begin{array}{c}
X_{o} \\
V_{x} \\
A_{x} \\
Y_{o} \\
V_{y} \\
A_{y} \\
Z_{o} \\
V_{z} \\
A_{z}
\end{array}\right)=\binom{m_{34} s_{x_{i}}-m_{14}}{m_{34} s_{y_{i}}-m_{24}}
$$

With $\Delta t_{i}=t_{i}-t_{o}$ and,

$$
\begin{array}{ccc}
\alpha=m_{11}^{C}-m_{31}^{C} s_{x} & \beta=m_{12}^{C}-m_{32}^{C} s_{x} & \gamma=m_{13}^{C}-m_{33}^{C} s_{x} \\
\alpha^{\prime}=m_{21}^{C}-m_{31}^{C} s_{y} & \beta^{\prime}=m_{22}^{C}-m_{32}^{C} s_{y} & \gamma^{\prime}=m_{23}^{C}-m_{33}^{C} s_{y} \tag{7}
\end{array}
$$

For each blob measurement two equations as given by eq (6) are generated in the overall system matrix and thus for $N \geq 5$ measurements we generate an over-constrained linear system for the 9 parameters of eq (3) in the form:

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{8}
\end{equation*}
$$

which can be solved by the method of Least Squares for the solution vector $\mathbf{x}$.

### 1.2.1 Modificaiton of 9P - Known Position

We can incorporate a known initial position into the constant acceleration trajectory by a reformulating eq (6) by moving the known quantities involving $X_{o}, Y_{o}, Z_{o}$ to the right hand side vector.

$$
\left[\begin{array}{llllll}
\alpha \Delta t_{i} & \alpha \frac{\Delta t_{i}^{2}}{2} & \beta \Delta t_{i} & \beta \frac{\Delta t_{i}^{2}}{2} & \gamma \Delta t_{i} & \gamma \frac{\Delta t_{i}^{2}}{2}  \tag{9}\\
\alpha^{\prime} \Delta t_{i} & \alpha^{\prime} \frac{\Delta t_{i}^{2}}{2} & \beta^{\prime} \Delta t_{i} & \beta^{\prime} \frac{\Delta t_{i}^{2}}{2} & \gamma^{\prime} \Delta t_{i} & \gamma^{\prime} \frac{\Delta t_{i}^{2}}{2}
\end{array}\right]\left(\begin{array}{c}
V_{x} \\
A_{x} \\
V_{y} \\
A_{y} \\
V_{z} \\
A_{z}
\end{array}\right)=\binom{m_{34} s_{x_{i}}-m_{14}-\alpha X_{o}-\beta Y_{o}-\gamma Z_{o}}{m_{34} s_{y_{i}}-m_{24}-\alpha^{\prime} X_{o}-\beta^{\prime} Y_{o}-\gamma^{\prime} Z_{o}}
$$

## 2 Solution of Pitch $f / x$ Parameters - Linear SVD

The SVD can be applied to the system given by (8), (6) to find the parameters, the residual and estimages of the standard errors in the paramters [2, Ch. 15 - Modeling of Data]. First the SVD of the $\mathrm{m} \times \mathrm{n}, m>n$, matrix A is computed:

$$
\begin{equation*}
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{T} \tag{10}
\end{equation*}
$$

where,

$$
\begin{align*}
\mathrm{U} & =\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{n}
\end{array}\right]  \tag{11}\\
\Sigma & =\left[\begin{array}{cccc}
\sigma_{1} & \ldots & \ldots & 0 \\
0 & \sigma_{2} & \ldots & 0 \\
0 & 0 & \ddots & 0 \\
0 & \ldots & 0 & \sigma_{p} \\
0 & \ldots & \ldots & 0
\end{array}\right]  \tag{12}\\
\mathrm{V} & =\left[\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{m}
\end{array}\right] \tag{13}
\end{align*}
$$

The diagonal elements of the $\mathrm{m} \times \mathrm{n}$ matrix $\Sigma$ contain the singular values of A of which there are at most $p$ which are non-zero. Next the singular are edited, that is thresholded, so
that only values larger than the threshold are used - the others are set to 0 . Then the 9 P parameters, $\mathrm{x}_{9 P}$ are calculated via:

$$
\begin{align*}
\mathbf{x}_{9 P} & =\sum_{\substack{i=1 \\
\sigma_{i} \neq 0}}^{m} \frac{\mathbf{v}_{i} \mathbf{u}_{i}^{T}}{\sigma_{i}} \mathbf{b}  \tag{14}\\
& =\mathrm{A}^{\dagger} \mathbf{b}
\end{align*}
$$

Where, $A^{\dagger}$ is the pseudo-inverse of $A$. The $2 n$ length residual vector is given by:

$$
\begin{equation*}
\mathbf{b}_{\text {res }} \equiv \mathbf{b}-A \mathbf{x}_{9 P} \tag{15}
\end{equation*}
$$

and the covariance matrix is given by:

$$
\begin{equation*}
\mathrm{C}_{j k}=\sum_{\substack{i=1 \\ \sigma_{i} \neq 0}}^{m} \frac{\mathrm{~V}_{j i} \mathrm{~V}_{k i}}{\sigma_{i}^{2}} \tag{16}
\end{equation*}
$$

## References

[1] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second ed., 2004.
[2] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, 2007.

