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Experiments are done by colliding a swinging bat with a stationary baseball or softball. Each

collision was recorded with high-speed cameras from which the post-impact speed, launch angle,

and spin of the ball could be determined. Initial bat speeds were in the range 63–88 mph, producing

launch angles in the range 0�–30� and spins in the range 0–3,500 rpm. The results are analyzed in

the context of a ball-bat collision model, and the parameters of that model are determined. For both

baseballs and softballs, the data are consistent with a mechanism whereby the ball grips the surface

of the bat, stretching the ball in the transverse direction and resulting in a spin that was up to 40%

greater than would be obtained by rolling contact of rigid bodies. Using a lumped parameter contact

model, baseballs are shown to be less compliant tangentially than softballs. Implications of our

results for batted balls in game situations are presented. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4982793]

I. INTRODUCTION

Scattering experiments have long been a staple for physi-
cists, having been used to probe the structure of objects over
a broad range of length and energy scales, from the structure
of solids, molecules, and atoms, that of the atomic nucleus,
and the structure of the nucleons therein. Indeed, much of
what is known about how the constituents of matter arrange
themselves into composite objects have come from scatter-
ing experiments. The classic experiment of that type was the
Rutherford alpha-scattering experiment in the early 20th cen-
tury that showed conclusively for the first time that atoms
are composed of a very small positively charged nucleus sur-
rounded by a much larger cloud of negatively charged elec-
trons.1 Many years later, experiments utilizing the deep
inelastic scattering of high-energy electrons from protons
demonstrated conclusively that protons themselves are com-
posite objects.2 Today we identify the constituents of the
proton as quarks and gluons, which themselves are believed
to be fundamental particles without structure.3

Students are often surprised to learn that some of the same
principles that apply to subatomic collisions also apply to
collisions of macroscopic objects.4 Some of these principles
are obvious such as conservation of momentum and angular
momentum in both elastic and inelastic collision. Others are
not as obvious. One question that often comes up regarding
inelastic collisions is this: Where did the missing kinetic
energy go? In subatomic collisions, the missing energy often
goes to exciting internal degrees of freedom of one or more
of the colliding objects. It is interesting that the same is often
true in the collision of macroscopic objects. For example, a
ball is dropped onto the floor and it bounces to a fraction of
its initial height. The missing energy went into exciting the
molecules that make up the ball, eventually appearing as
heat. The transfer of energy from external to internal degrees
of freedom is a theme that shows up in diverse areas of
physics.

Not only is the study of the internal degrees of freedom
interesting from a purely physics point of view, but it also

often has practical value. This is especially true in the colli-
sions of sports balls with striking objects, such as rackets,
clubs, or bats, where it is often important to maximize the
speed of the struck ball by minimizing the loss of kinetic
energy. It is also often important to maximize the spin of a
struck ball in an oblique collision with a surface. Minimizing
the loss of kinetic energy and maximizing the post-impact
spin means maximizing both the normal and tangential coef-
ficients of restitutions, a topic we will explore in detail in
this article for the collision of a baseball or softball with a
bat.

There have been very few investigations of oblique colli-
sion between a ball and a bat. Both Sawicki et al.5 and Watts
and Baroni6 did theoretical calculations of oblique collisions,
using a model in which the ball and bat mutually roll as the
ball leaves the bat. Subsequent experiments by Cross and
Nathan7 at very low speed and by Nathan et al.8 at much
higher speed have shown that balls do not roll as they bounce
but instead grip the surface, resulting in an enhancement to
the post-impact spin. In both these experiments, a ball was
scattered from a bat that was initially at rest. We investigate
this topic in a new experiment, in which a moving bat
impacts a ball that is initially at rest. The results confirm the
previous experiments that show an enhancement to the spin.
A preliminary version of this work has appeared elsewhere.9

II. EXPERIMENTAL METHOD AND DATA

REDUCTION

The aim of this work was to measure the velocity and spin
rate of the batted ball at collision speeds representative of
actual play. A machine was used to swing bats against a sta-
tionary ball resting on a tee. Bats were swung to achieve
speeds between 63 and 88 mph (28 and 39 m/s, respectively)
at the impact location. Bats were fastened onto a rotating
pivot with a flexible clamp. A 10 mm-thick piece of rubber
was placed between the clamp and the bat handle, keeping
the bat from slipping out of the machine and allowing
compliancy to simulate a batter’s hands. Each impact was
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measured with two cameras (1,200� 800 pixels) placed in
the plane of the swinging bat. Camera 1 was set to a viewing
plane of 23� 35 in. (0.58� 0.89 m) and recorded the bat-
ball impact at 3,000 frames per second. This camera was
aligned collinearly with the bat at impact, as shown in Fig. 1.
Camera 2, also shown in Fig. 1, was set to a viewing plane
of 39� 59 in. (1.0� 1.5 m) and recorded the impact at 1,000
frames per second.

Each batted-ball event was tracked with the ProAnalyst
2-D tracking software.10 The bat tip speed and swing plane
angle were determined from camera 1 using a tracking dot
on the end cap of the bat. Since the impact location along
the bat and the location of the bat rotation axis are known,
the speed of the bat vbat at the impact location could be
determined. The hit ball speed vball and the angle of the ball
with the horizontal were also obtained from camera 1. From
this information, the angle h of the outgoing ball with
respect to the swing direction could be determined, as
shown in Fig. 2. Camera 2 was used to measure the spin
rate x of the ball in the following manner. Each ball was
marked with a series of four tracking dots forming the out-
side corners of a 1.5-in. (38-mm) square pattern. The ball
was placed on the tee so that the center of rotation of the
ball after impact was within the interior of the square pat-
tern defined by the four dots. Two of the four dots were
tracked for each hit. Impacts where at least one dot did not
rotate about the center of rotation were not included in the
data set. Each dot’s coordinates were used to calculate the
angle of rotation from each video frame which were then
used to find x. The spin was averaged over the time the ball
left the bat to the time when the ball left the viewing plane
(typically 15 frames).

The properties of the balls and bats used in the study are
presented in Tables I and II, respectively. Both baseball and
softballs were used. Three different baseball bats and one
softball bat were utilized. The baseball bats included a
wooden bat, a metal bat with a smooth surface, and a metal
bat with a rough surface. The softball bat was made of a
composite material and had a smooth surface. Standard
methods11 were used to measure the moment of inertia of
each bat about the central axis (Iz) and about an axis perpen-
dicular to the central axis and passing through the center of
mass (I0).

The reduced data for the experiment are shown in Figs. 3
and 4, which show, respectively, the spin rate and exit speed
of the ball as a function of the scattering angle h. As will be
shown in Sec. III, both the spin rate and the exit speed scale
linearly with the initial bat speed. Since a range of speeds
were used in the experiment, the spin rates and exit speeds in
Figs. 3 and 4 have been normalized to a bat speed of 77 mph
(34 m/s) by multiplying the actual spins and speed by vbat/
77 mph. For both baseballs and softballs, the normalized
spins are remarkably linear over the full range of h, a topic
that will be discussed in Sec. IV.

III. BALL-BAT COLLISION FORMALISM

A. Kinematics

The goal of the analysis is to interpret the experimental
results in the context of the collision formalism described in
detail by Cross and Nathan.7 The collision geometry is
shown in Fig. 2. The velocities of the ball and bat,~vball and
~vbat, are decomposed into components along the normal axis
n̂, defined as the line connecting the centers of the bat and

Fig. 1. Representative views from camera 1 (top) and camera 2 (bottom)

used to measure bat and ball speed and rotation.

Fig. 2. Geometry for the ball-bat collision experiment, showing the initial

velocity of the bat ~vbat, the velocity of the struck ball ~vball, the scattering

angle h, and the post-impact spin x. Also shown are the unit vectors n̂ and t̂
normal and transverse, respectively, to the bat surface, and the angle w
between the bat direction and the normal. The parameter D is the perpendic-

ular distance between the center of the ball and~vbat.

Table I. Mean values of the mass and radii of baseballs used in the present

study, with the standard deviation of the quantities in parentheses. Also

shown are the maximum values of w and D, which are related by Eq. (3).

Ball type Number m (oz) r (in) wmax (deg) Dmax (in)

Baseball 58 5.04 (0.04) 1.42 (0.01) 30 1.35

Softball 50 7.09 (0.07) 1.90 (0.01) 41 2.00
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ball at impact, and the transverse axis t̂, which is in the scat-
tering plane and orthogonal to n̂. Neither the n̂ nor the t̂ axes
are directly measured. However, they can be determined
from the conservation of angular momentum of the ball
about the contact point. Assuming the ball-bat interaction
indeed acts at a point and the center of mass is at the geomet-
ric center of the ball, then the post-collision angular momen-
tum of the ball, which is initially at rest with zero angular
momentum, must vanish. That is,

Iballx ¼ mvball;tr ¼ mvballr sinðw� hÞ; (1)

where r and m are the radius and mass of the ball, respec-
tively, and Iball is the moment of inertia of the ball about its
center, or

Iball ¼ amr2; (2)

with a¼ 0.4, the value for a uniform sphere.12 Since vball,
h, and x are all measured quantities, Eq. (1) can be solved
for w, the angle of~vbat with respect to the n̂ axis. Note that
the angular momentum due to the spin points out of the
plane of the diagram and is canceled by the angular
momentum due to the center of mass motion, which points
in the opposite direction. The angle w is related to the ball-
bat offset D by13

D ¼ ðr þ RÞ sin w : (3)

The maximum values of w and D in the present experiment
are given in Table I.

The normal part of the collision utilizes the expression7

vball;n ¼
1þ ey

1þ ry

� �
vbat;n; (4)

where ey is the normal coefficient of restitution and ry is a
kinematic factor associated with the recoil of the bat in the
normal direction, given by

ry ¼ m
1

M
þ b2

I0

� �
: (5)

Analogously, the transverse part of the collision utilizes the
expression7

vball;t þ rx ¼ 1þ ex

1þ rx

� �
vbat;t; (6)

where ex is the transverse coefficient of restitution and rx is a
kinematic factor associated with the recoil of the bat in the
transverse direction, given by

rx ¼
ma

1þ a
1

M
þ b2

I0

þ R2

Iz

� �
: (7)

The sign convention is such that all the velocities and spin in
Eq. (6) are positive for the case shown in Fig. 2. The mass
M, radius R, moments of inertia I0 and Iz, and impact location
b for each of the four bats are given in Table II. Equations
(1) and (6) can be combined to arrive at

x ¼ 1þ exð Þ vbat sin w
r 1þ rxð Þ 1þ að Þ

� �
; (8)

and

vball;t ¼ 1þ exð Þ avbat sin w
1þ rxð Þ 1þ að Þ

� �
: (9)

Alternately, the two preceding equations can be combined to
obtain

vball;t þ rx
vbat;n

¼ 1þ exð Þ tan w
1þ rx

� �
: (10)

Table II. Properties of bats used in the present study, including the mass M,

the moments of inertia about two orthogonal axes I0 and Iz, and the radius R

of the bat at the impact location and its distance b from the center of mass.

Also given are the values of ex for baseballs (bb) and softballs (sb), with

standard errors in parentheses.

Bat type

M
(oz)

I0

(oz-in2)

Iz

(oz-in2)

b
(in)

R
(in)

ex

(bb)

ex

(sb)

Wood 29.41 2370 9.1 6.8 1.16 0.464(14) 0.234(17)

Metal rough 30.83 2758 18.0 5.8 1.28 0.356(15) 0.130(38)

Metal smooth 31.59 3165 18.3 6.6 1.29 0.374(15) 0.128(13)

Softball composite 28.33 2867 11.9 6.2 1.13 — 0.128(12)

Fig. 3. Normalized spin of the batted ball as a function of launch angle. The

closed and open points are for baseballs and softballs, respectively; the

dashed lines are linear fits with slopes 179 rpm/deg and 98 rpm/deg.

Fig. 4. Normalized exit speed of the batted ball as a function of launch

angle. The closed and open points are for baseballs and softballs, respec-

tively; the dashed lines are linear fits, with slopes �0.65 mph/deg and

�0.72 mph/deg.
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B. Slipping, rolling, and gripping

Other than purely kinematic terms, the collision is deter-
mined by the coefficients of restitution, ey and ex, which gov-
ern energy conservation in the normal and transverse
directions.14 Purely normal collisions (those with D¼w¼ 0)
have no transverse velocity component and have been stud-
ied extensively in the literature, providing considerable
information about ey for collisions between a baseball or a
softball with a bat.15,16 In contrast, there have been very few
studies of oblique collision. Accordingly, the present physics
analysis will focus on the transverse part and particularly ex,
which plays an important role in determining the spin of the
struck ball. Therefore, it is useful at this stage to discuss its
physical significance.

The parameter ex is defined as the negative of the ratio of rel-
ative tangential velocity at the contact point after the collision
to that before the collision.17 When the bat makes contact with
the stationary ball, it exerts a force N on the ball in the n̂ direc-
tion. Suppose the bat has nonzero tangential velocity vbat sin w,
and consider the case where the ball and bat are completely
rigid in the transverse direction. Under such circumstances, the
ball and bat will initially slide along their mutual surfaces. As a
result, the ball exerts a frictional force F¼lkN on the bat in
the �t̂ direction, and the bat exerts an identical force F on the
ball in the þt̂ direction, causing it to accelerate in that direction
and to spin as shown in Fig. 2. Here, lk is the coefficient of
sliding friction. If F brings the sliding to a halt prior to the ball
leaving the surface, then F drops to zero and the ball rolls along
the surface until it leaves the bat. In that case, the transverse
impulse is related to the normal impulse by

Ð
Fdt < lk

Ð
Ndt.

Moreover, since the relative tangential velocity is zero when
rolling, we have ex¼ 0. If F is insufficient to bring the sliding
to a halt before the ball leaves the bat—a condition referred to
as “gross slip”—then the final and initial relative tangential
velocities have the same sign so that ex< 0 and the spin is
reduced relative to the rolling case. In that case,

Ð
Fdt

¼ lk

Ð
Ndt. The gross slip and rolling cases are the only possi-

bilities for a rigid ball and were the only ones considered by
Watts and Baroni6 and by Sawicki et al.5

For a ball with tangential compliance, a third case is possi-
ble in which the relative tangential motion drops suddenly to
zero as the ball grips the surface, either initially or after a
period of sliding, as kinetic energy associated with the trans-
verse motion is converted to potential energy associated with
the tangential stretching of the ball.17 Under such circumstan-
ces, the contact point is at rest, held in place by a force F due
to static friction, so that F� lsN, where ls is the coefficient
of static friction. To analyze such a situation in detail requires
a dynamic model,18–20 an example of which will be discussed
in Sec. V. Depending on the details, the resulting ex can be
positive, so that the final spin is enhanced relative to the roll-
ing case, a condition referred to as “overspin.” For all three
scenarios (rolling, gross slip, and gripping),

Ð
Fdt � l

Ð
Ndt,

where the distinction between the coefficients of sliding and
static friction has been ignored and where equality is achieved
only in the special case of gross slip. A positive ex corre-
sponds to a reversal of the initial relative tangential velocity,
which can only occur if there is tangential compliance.

IV. RESULTS

The physically interesting quantity to be derived from
these data, ex, is examined in Fig. 5, where the spin is plotted

against the term in brackets on the right-hand side of Eq. (8)
for baseballs and softballs separately but averaged over all
bats. The dashed curve is a linear fit, where Eq. (8) shows
that the slope equals 1 þ ex, from which we find

hexi ¼ 0:40560:010 ðbaseballsÞ
¼ 0:14660:009 ðsoftballsÞ; (11)

where the average is taken over all bats. Linear fits were also
fitted to individual bats, and the results are given in Table II.
One simple way to interpret these numbers is that the spin of
the batted ball is enhanced relative to the “sliding-then-roll-
ing” scenario (i.e., ex¼ 0) by 40% for baseballs and 15% for
softballs. For baseballs, this value of ex exceeds that obtained
in a previous experiment at comparable speeds.8 To our
knowledge, this is the first such measurement of ex for
softballs.

Given that the data are consistent with ex� 0, a gross slip
scattering mechanism can be ruled out. From the discussion
in Sec. III, this result can be used to establish a lower limit
on the size of lk equal to the ratio of transverse to normal
impulses imparted to the ball of

lk �

ð
Fdtð
Ndt
¼ vball;t

vball;n
¼ tan w� hð Þ; (12)

where equality is achieved for gross slip. On the other hand,
with the help of Eqs. (4) and (9), the right-hand side of Eq.
(12) can be expressed as

lk � tan w� hð Þ

¼ a
1þ a

� �
1þ ex

1þ rx

� �
1þ ry

1þ ey

� �" #
tan wð Þ : (13)

A plot of tanðw� hÞ versus tanðwÞ is shown in Fig. 6, from
which a lower limit of 0.15 and 0.20 can be placed on lk for
baseball and softballs, respectively. This limit is not particu-
larly interesting, since lk is likely significantly larger.7

Fig. 5. Spin of the batted ball as a function of the term in brackets on the

right-hand side of Eq. (8). The closed and open points are for baseballs and

softballs, respectively, while the slopes of the dashed lines, which are equal

to 1 þ ex, are 1.405 (baseballs) and 1.146 (softballs). For reference, the solid

line has unit slope, which would be expected if ex were zero.
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Nevertheless, it does show that considerably larger impact
angles w, and correspondingly larger post-impact spin rates
x and launch angles h, can be achieved before gross slip sets
in. For example, if lk were 0.50,7 the corresponding maxi-
mum w prior to gross slip would be about 60�, leading to
x¼ 6,400 rpm and h¼ 34�.

As noted earlier, x is remarkably linear in h over the full
range of measurements in Fig. 3. In the small-angle approxi-
mation, this result follows immediately from Eqs. (8) and
(13), which, taken together imply x/w/ h. A further
observation is that for a given type of ball (baseball or soft-
ball), x depends only weakly on the bat, despite Iz values
differing by a factor of 2 (see Table II). Keeping in mind that
Iz enters the formalism only through the recoil factor rx [Eq.
(7)] and that x depends only on 1 þ rx [Eq. (8)], a large sen-
sitivity of x to Iz is not expected.

V. DISCUSSION

A. A lumped parameter model

In this section, we present the results of the dynamic
model of Stronge,19,20 in a geometry in which a spherical
ball is incident on a massive rigid surface. For the actual cal-
culations presented below, the formalism has been modified
appropriately to accommodate the present experiment, where
a bat is incident on a stationary ball. Nevertheless, for ease
of presentation the discussion will be in the context of
Stronge’s original geometry.

The collision is treated as a lumped parameter model,
where a sphere (a¼ 0.4) of mass m is incident at angle w on
a flat surface. The sphere is coupled to a massless contact
point C via two linear springs, one each for the normal and
tangential components of the collision, with force constants
kn and kt, respectively, as depicted in Fig. 7. The normal
spring has dissipation, resulting in the normal coefficient of
restitution ey, whereas the tangential spring is perfectly elas-
tic. Besides ey, the other essential parameters of the model
are the coefficient of friction l and the ratio of normal to
transverse spring constants g2¼ kn/kt. The natural vibration
frequencies are Xn ¼

ffiffiffiffiffiffiffiffiffiffi
kn=m

p
and Xt ¼ Xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3:5=g2

p
.

Upon initial contact, the normal spring compresses, then
recovers to its relaxed length, terminating the collision after
a total contact time tf¼ tc(1 þ ey), where tc¼ (p/2)/Xn is the

time to maximum compression. Since C is massless, there can
be no net force on it. Therefore, the transverse force due to the
stretching or compressing of the tangential spring is balanced
by an opposite frictional force, either static friction if C is at
rest (“stick”) or sliding friction if C is moving (“slip”).

There are three distinct cases considered by Stronge. First,
when tan w < lg2, the initial state is stick, which persists
until the static friction needed to fix C to the surface exceeds
its limit, whereupon C enters the slip state for the remainder
of the collision (“stick-slip”). Second, when lg2 � tan w
< 3:5lð1þ eyÞ, the initial state is slip, followed later by a
stick state, then followed by the slip state for the remainder
of the collision (“slip-stick-slip”). Third, when tan w �
3:5lð1þ eyÞ the initial slip state persists throughout the
entire collision (“gross slip”). The conditions for the transi-
tion between stick and slip states are determined by l and by
the relative sizes of the forces from the two springs.

The motion in both the normal and transverse directions
can be calculated, either analytically20 or numerically, the lat-
ter being the approach used here. For given input parameters
and incident angle w, the equations of motion are integrated
until the surfaces separate, obtaining the final transverse
speed. For small w, the final speed is insensitive to the size of
l, as long as the initial stick criterion is satisfied. The most
crucial parameter is g2, which essentially determines the phase
of the transverse vibration at the transition from stick to slip.

An interesting extreme example is that of a superball, for
which g2¼ 3.5 and ey¼ 1, implying Xt¼Xn and no energy
loss for the normal part of the collision. Therefore, assuming
the initial stick criterion is satisfied, at the moment of separa-
tion the transverse spring is exactly at its equilibrium posi-
tion with the mass moving with the same speed as initially
but in the opposite direction. In the language of Sec. III,
ex¼ 1 and the initial kinetic energy is completely conserved,
both in the normal and transverse directions.21 Cross gives
an excellent discussion of this effect in a recent article.14

To apply this model to the present experiment, g2 was
adjusted to best reproduce the data, resulting in values 4.75
and 6.30 for baseballs and softballs, respectively. In addition,
ey¼l¼ 0.5 was assumed, although the actual results are
insensitive to those parameters, at least over the range of w
of the experiment. The corresponding tangential vibration
frequencies are 0.86Xn and 0.75Xn, respectively. The results
are shown in Fig. 8, where the left-hand side of Eq. (10) is

Fig. 6. Plot of tanðw� hÞ vs tanðwÞ. The closed and open points are for

baseballs and softballs, respectively; the dashed lines are linear fits with

slopes 0.281 (baseballs) and 0.252 (softballs). The slopes are proportional to

the ratio (1 þ ex)/(1 þ ey), as indicated in Eq. (13).

Fig. 7. Geometry for the lumped parameter model of Stronge. The ball is

coupled to a massless contact point C (denoted by the black box) by two

springs with force constants kn and kt. The contact point either slips on or

grips the rough massive surface, denoted by the gray area.
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plotted against the term in parentheses on the right-hand side.
The local slope is equivalent to the local value of 1 þ ex. The
calculation does an excellent job accounting for the data and is
consistent with the constant value of ex found in Sec. IV. The
present data were all taken at small enough w to be consistent
with a “stick-slip” scenario. Indeed, the curves are quite linear
over a broad range of w, although they get very nonlinear and
eventually flatten after the transition to gross slip.

In Fig. 9, the transverse velocity and force are plotted for
the incident angle w¼ 30�, in the frame of reference in
which the ball is incident on a stationary bat. For both base-
balls and softballs, there is a period of initial stick which per-
sists up to t� 1.4tc, followed by a short period of slip until
separation at 1.5tc. During the period of stick, the tangential
spring stretches, reaching a maximum at 1.16tc for baseballs
and 1.33tc for softballs, then reverses direction just prior to
the transition to slip. After the transition, the transverse force
drops rapidly to zero as the spring quickly recovers and sepa-
ration occurs. Over the period of stick, the transverse speed
is proportional to cosðXttÞ, so that the lower frequency for
softballs results in a lower transverse speed at separation and
a correspondingly lower value of ex.

As remarked, all the data from the present experiment are
consistent with a “stick-slip” scenario, whereby the transition
to slip occurs very nearly at the end of the collision. All of
the transverse energy dissipated occurs in this final phase and is the result of friction as the contact point slides along

the surface. In effect, a large fraction of the potential energy
stored in the transverse spring at the moment of transition
gets dissipated in friction.

In the context of this formalism, the primary difference
between baseballs and softballs is the difference in tangential
compliance, with baseballs being stiffer (less compliant) than
softballs. It remains to be seen whether this property is consis-
tent with the known material properties of these balls. In that
regard, a softball is nearly a uniform sphere, with the bulk of
the volume being a rigid polyurethane foam and with a thin
leather cover.22 On the other hand, a baseball is a rather com-
plicated object23 and probably very difficult to model.

B. Implications for batted balls

The implication of our results for the spin, speed, launch
angle, and fly ball distance of the batted ball are explored
next. This analysis is performed only for baseballs, but it
would be straightforward to extend the analysis to softballs.
An incident pitch was assumed to approach home plate with a
speed of 85 mph, a descent angle of 6�, and a backspin rate of
2,000 rpm, all values representative of MLB fastballs.24 It was
further assumed that the bat was swung at an attack angle of
6� and with a speed of 73 mph at the impact point. In accor-
dance with the results of the present experiment, ex was set at
0.4, where an implicit assumption has been made that the
same value of ex persists at an impact speed of 158 mph as at
77 mph. Testing this assumption will have to await experi-
ments at higher speed. The consequences of the resulting col-
lision are explored as a function of the parameter D, defined
as in Fig. 2, with the results shown in Fig. 10. The exit speed
and backspin rate, as a function of both launch angle and D,
are shown in the top plot. As expected, the exit speed peaks at
small launch angles (D� 0), corresponding to a perfect head-
on collision, and slowly drops off with increasing launch
angle or D, in qualitative agreement with data from actual
MLB games.25 The backspin rate is approximately a linear
function of D. Note that the rate is negative (i.e., topspin) for

Fig. 8. Plot of the current data along with a fit using the formalism of

Stronge (Ref. 19). In panel (a), the solid and open points are for baseballs

and softballs, respectively, and the error bars are estimates based on the fluc-

tuation of the data about a smooth line. In panel (b), the lines are an extrapo-

lation of the fits to larger impact angles.

Fig. 9. Calculations of the time evolution of the transverse velocity (points,

right scale) and force (curves, left scale) for baseballs (closed points and dot-

ted curve) and softballs (open points and dashed curve) in the frame of refer-

ence in which the ball is incident at an angle of 30� on a bat at rest. The

velocity is normalized to the initial normal velocity and the force to the peak

normal force. The solid horizontal line indicates the period of initial stick,

with a transition to slip at about t/tc¼ 1.4, and the dashed horizontal line cor-

responds to zero transverse velocity.
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D¼ 0, a consequence of the incident backspin of the pitch.
The bottom plot shows the resulting trajectory, calculated
from the exit speed, launch angle, and backspin, using drag
and lift coefficients previously determined.26 The trajectory
evolves from a hard-hit line drive at small D, to a 400-ft home
run at intermediate D, to a lazy fly ball or popup at still larger
D. These results conform nicely with observations of trajecto-
ries from MLB games.27

VI. SUMMARY AND CONCLUSIONS

Experiments have been made by colliding a swinging bat
with a stationary baseball and softball. The pre-impact velocity
of the bat (speed and direction) was measured along with the
post-impact velocity and spin of the ball. The data have been
analyzed to determine the tangential coefficient of restitution
of each type of ball. Both baseballs and softballs have spins
that are enhanced relative to that expected for a rigid body,
suggesting tangential compliance. In the context of a simple
lumped-parameter model of the collision, it is shown that soft-
balls have a greater tangential compliance than baseballs.
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