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Reducing the effect of the ball on bat performance measurements
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(Received 3 March 2011; accepted 28 April 2011)

Abstract
A simple physical model is presented that relates the ball–bat coefficient of restitution e to the ball coefficient of restitution e0
and dynamic stiffness k0. The model is used to develop a technique to normalize e to values of e0 and k0 for a “standard ball.”
The efficacy of this normalization technique is demonstrated by comparison with experimental data. It is shown to be vastly
superior to a widely used technique that is based on the physically unjustified assumption that the ratio e/e0, commonly
referred to as the Bat Performance Factor or BPF, is independent of both e0 and k0. A residual, but much reduced,
dependence of the normalized e on k0 is observed and is shown through finite element simulations to be due to a dependence
of the bat stiffness on the ball stiffness.
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Introduction

In recent years, work has been done to measure and

regulate the performance of non-wood baseball and

softball bats. The measurement technique involves

projecting a ball from a high-speed cannon onto a

stationary bat and measuring the speed of the ball

both before and after the collision. From these

measurements, a value can be derived for the ball–

bat coefficient of restitution (COR) e, which is a

measure of energy dissipation in the ball–bat system.

If e is to be a meaningful metric of bat performance, it

is necessary to control the properties of the balls used

to measure it. One such ball property is e0, the COR

of the ball when colliding with a massive rigid object,

which determines the fraction of compressional

energy stored in the ball that is returned as kinetic

energy. A second ball property is k0, the effective

spring constant or “dynamic stiffness” of the ball

when colliding with a massive rigid object. For a

given bat, the ball stiffness controls how the initial

energy is partitioned between compressional energy

stored in the ball and that stored in the bat. The

larger the ball stiffness, the less compressional energy

is stored in the ball, leading to less overall

energy dissipation and larger e. This phenomenon

is popularly known as the “trampoline effect” (Cross,

2011; Nathan, Russell, & Smith, 2004).

Based on these general ideas, a highly-simplified

theoretical model is constructed in Section 2 that

describes the dependence of e on e0 and k0. This

model is used to develop a technique to normalize e

to a “standard ball” with COR e0S and stiffness k0S.

In Section 3, an experiment is described to test this

normalization technique, with the results and

discussion presented in Sections 4 and 5, respect-

ively. The technique is applied to a practical problem

in Section 6. A summary and conclusions are given in

Section 7.

Theoretical considerations

Two-spring model for the ball–bat collision

The starting point is a two-spring model for the ball–

bat collision, Figure 1, which was previously

developed by Cross as a model for the trampoline

effect in the interaction of tennis balls with the racket

strings (Cross, 2000). In this model, the ball and bat

are each represented as masses on linear lossy

springs, with force constants k0 and k1, respectively.

We hereafter refer to k0 as the “dynamic stiffness” of

the ball. The two springs mutually compress each

other, converting the initial center-of-mass (CM)
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kinetic energy entirely into compressional potential

energy. The fundamental equation for the energy

dissipated in the collision is:

1 2 e2 ¼ ð1 2 e2
0Þf 0 þ ð1 2 e2

1Þf 1 ð1Þ

where f0 and f1 are the fraction of the initial CM energy

stored in the ball and bat, respectively; the quantities

ð1 2 e2
0Þ and ð1 2 e2

1Þ are the fraction of stored energy

that is dissipated in the ball or bat; and (1 2 e 2) is the

fraction of total CM energy that is dissipated in the

collision. For linear springs, f0 ¼ k1/(k1 þ k0) and

f1 ¼ k0/(k1 þ k0). Defining r ; k1/k0, which is the

ratio of energy stored in the ball to that stored in the

bat, Eq. 1 can be rearranged to obtain:

e2 ¼
re2

0 þ e2
1

1 þ r
ð2Þ

Assuming no losses in the bat (i.e., e1 ¼ 1), a

reasonable assumption for impacts near the sweet

spot of the bat (Nathan, 2000), then Eq. (2) can be

rewritten to obtain the result of Cross (2000):

e2 ¼
re2

0 þ 1

1 þ r
ð3Þ

Eq. 3 is the basis for our normalization procedure.

A plot of e vs. r is shown in Figure 2(a) for several

different values of e0. The limiting cases have simple

physical interpretations. For r @ 1, essentially all of

the CM energy is stored in the ball, none in the bat,

and e approaches e0, the value for the ball alone,

independent of r. This regime is typical of wood bats

and low-performing hollow bats. In the opposite

regime r ! 1, very little energy is stored in the ball, so

that e approaches 1 (or more generally e1)

independent of e0. In the intermediate range, e is

larger than e0, as some of the energy that might have

been stored and mostly dissipated in the ball is

instead stored in the bat. For modern hollow metal or

composite bats, r is generally in the range 2–15,

a range in which e depends on both ball properties,

e0 and k0.

Normalizing to a standard ball

Suppose a ball of known COR e0 and dynamic

stiffness k0 is used to measure the ball–bat COR for a

particular bat, obtaining e. Given that information,

a technique is sought to predict the ball–bat COR eS
when the same bat is tested with a “standard” or

normalizing ball with COR e0S and dynamic stiffness

k0S. In the context of the two-spring model, an exact

procedure can be obtained via Eq. 3. After some

algebraic manipulation, our proposed normalization

prescription is obtained:

two 2 spring model: eS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rSe

2
0S þ 1

1 þ rS

s
ð4Þ

Figure 1. Simplified physical model for the ball-bat collision.

Figure 2. (a) Plot of e vs. r (Eq. 3) for three values of e0. (b) Plot of the ratio e/e0, commonly called the BPF, vs. r for three values of e0,

demonstrating that the BPF is not independent of either ball COR or dynamic stiffness. The dashed, solid, and dotted curves correspond to

e0 ¼ 0.40, 0.35, and 0.30, respectively. For the bat and balls studied experimentally, 2.6 , r , 5.1.

A.M. Nathan et al.2
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where rS is the ratio of bat stiffness to the stiffness of

the standard ball, and is given by:

rS ;
k1

k0S

¼
k0

k0S

1 2 e2

e2 2 e2
0

ð5Þ

A different normalization procedure (Brandt, 1997)

is widely used and is based on the assumption that

the ratio e/e0, commonly known as the Bat

Performance Factor or BPF, is a property of the bat

alone and independent of both e0 and k0. The BPF

normalization is given by the formula:

eS;BPF ¼ e
e0S

e0

� �
ð6Þ

However, the BPF assumption is not in general

consistent with the two-spring model. Indeed, a

careful inspection of Eq. 4 or Figure 2(b) shows that

e/e0 is independent of e0 and k0 only in the limit r @ 1,

i.e., only for wood or low-performing hollow bats.

Moreover, the BPF technique does not correct for

differences in the ball dynamic stiffness.

Experiment

The bat and ball testing facility at the Sports Science

Laboratory at Washington State University (Smith,

2008; Smith & Cruz, 2008) was used to study the

dependence of e on the ball properties e0 and k0, with

the specific goal of testing the normalization

procedure of Eqs. 4–5. The measurements consisted

of firing a softball from an air cannon at 49.2 ^ 0.4

m/s (110 ^ 1 mph) onto a stationary bat that is

mounted horizontally and is free to pivot about a

point on the handle 15 cm from the knob. The speeds

of the incoming and rebounding ball are measured,

from which the ball–bat COR is derived using

standard formulas (Nathan, 2003). From past

experience with such measurements (Smith, 2008),

the ball–bat COR is determined with a root-mean-

square precision of approximately 0.005. The

measurements utilized 78 different standard soft-

balls, whose COR and dynamic stiffness were

determined in supplemental experiments (ASTM,

2010; Smith, Nathan, & Duris, 2010) and ranged

from 0.31–0.39 and 8.9–17.5 kN/cm (5100–

10,000 lb/inch), respectively.

The bat studied was a high-performing non-wood

softball bat, the Louisville Slugger Catalyst of length

0.86 m (34 inch) and weight 0.75 kg (26.5 oz). As we

will discuss shortly, the r values for this bat and the

balls used were in the range 2.6–5.1. From Figure 2,

we see that in this regime the ball–bat COR is a much

stronger function of k0 than of e0, whereas the BPF is

a strong function of both k0 and e0. This bat should

therefore be particularly useful both for testing our

procedure for normalizing to dynamic stiffness and

for distinguishing the two techniques for normalizing

to COR. The impact location was fixed at 16.5 cm

(6.5 inch) from the barrel tip. The standard ball used

to obtain normalized COR values had e0S ¼ 0.36 and

k0S ¼ 11.7 kN/cm (6700 lb/inch).

Results

The results of the measurements are presented in

Figure 3, where the plotted values represent

individual impacts. Figure 3(a) shows the ball–bat

COR values plotted versus e0, along with linear fits.

Given the strong dependence of e on k0, the results in

Figure 3(a) are shown only over the limited range of

dynamic stiffness 10.0-12.2 kN/cm. The two-spring

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.30 0.32 0.34 0.36 0.38 0.40

e

e0

(a)

0.50

0.55

0.60

0.65

8 10 12 14 16 18

e

k0 (kN/cm)

(b)

Figure 3. Results for the ball-bat COR e plotted as a function of (a)

ball COR e0 or (b) ball stiffness k0. The blue open squares are the

unnormalized values. The normalized values are shown as the red

open circles (Eqs. 4–5), open black diamonds (Eqs. 7–8), or open

black triangles (Eq. 6). The data in (a) are those with k0 in the

range 10.0-12.2 kN/cm. The dashed lines are linear fits to the data.
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normalization prescription, Eqs. 4–5, removes

essentially all the dependence on e0, reducing the

slope of the linear fit by a factor of fifteen. On the

other hand, the BPF normalization technique, Eq. 6,

overcorrects for e0, resulting in a slope larger in

magnitude and opposite in sign compared with the

uncorrected data. Figure 3(b) shows all 78 COR

values plotted versus k0 and demonstrates that e has

an approximately linear dependence on k0 with a

slope of 0.0157 cm/kN. The slope is reduced by a

factor of three by the two-spring normalization.

Ideally, the normalized slope would be zero, so there

is some additional dependence of e on k0 that is not

accounted for by the two-spring model. Using Eq. 5,

the bat stiffness is estimated to be approximately

45 kN/m (26,000 lb/inch), so that r falls in the range

2.6–5.1. That the BPF technique works so poorly

can be easily understood from Figure 2(b), given the

range of r. Indeed, the experimental BPF values are

far from constant, ranging from 1.4–1.8 for the 78

impacts.

Discussion

While the two-spring normalization technique sub-

stantially reduces the dependence of eS on k0 and e0, a

residual dependence of eS on k0 was nevertheless

observed. A possible key to understanding the origin

of this residual dependence may be found in Figure 4,

which shows that the bat stiffness k1 (Eq. 5) decreases

with increasing k0, while in the two-spring model k1 is

assumed to be independent of k0. To study the

limitations of the two-spring model, the bat–ball

impact was modeled numerically using finite

elements. The model was constrained to simulate

the bat performance test described in Section 3. The

bat was modeled using a linear elastic material, where

the modulus was adjusted to achieve the desired

performance level (i.e., k1). The ball was modeled

using a linear viscoelastic material, with the visco-

elastic properties adjusted to reproduce approxi-

mately the values of e0 and k0 used in the experiment

(Smith & Duris, 2009). Simulated impacts between

these balls and bats of differing stiffness were

consistent with the predictions of the two-spring

model (Figure 2). Namely, when r is small, e is more

sensitive to k0 than to e0; when r is large, e is more

sensitive to e0 than to k0. Details of the finite element

analysis are given in the thesis of Faber (2010).

From the simulated impact, the bat stiffness could

be found from the ratio of the peak contact force to

the corresponding deformation of the bat profile.

These values are plotted as a curve in Figure 4 and

show a similar decrease in bat stiffness with

increasing k0 to the experimental data. Upon closer

inspection, the simulations reveal the origin of this

behavior, as illustrated in Figure 5, which shows the

bat deformed shape with a high-stiffness ball and

low-stiffness ball. The simulations show that the

high-stiffness ball is better able to maintain its

spherical shape upon impact with the bat, while the

bat exhibits noticeable local deformation in the form

of a flat region at the center of the contact region.

The net result is a smaller effective contact area and a

correspondingly larger bat deformation for a given

impact force, resulting in a smaller k1. Qualitatively,

the effect of nonconstant k1 on the normalization

procedure is understood as follows. As k1 decreases

with increasing k0, the bat-to-ball stiffness ratio r

decreases more rapidly with increasing k0 than it

otherwise would, so that the technique described in

Figure 4. Bat stiffness k1 (closed points) as a function of ball

stiffness k0, as derived from the data and Eq. 5; the solid curve is

from the corresponding finite element simulation. The open points

are the sum k0 þ k1; the dashed curve is from the corresponding

finite element simulation. Both the data and the simulation show

that the bat stiffness decreases with increasing k0 but the sum of bat

and ball stiffness is approximately constant.

Figure 5. Comparison of the bat cross-sectional profile for

simulated impacts with a ball of high stiffness (dotted curve) and

low stiffness (dashed curve). The solid curve is the bat undeformed

profile.

A.M. Nathan et al.4
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Section 2.2 will under-correct for ball stiffness,

exactly as the data show. The simulations further

show that this effect is larger for high-performance

than for low-performance bats.

An interesting feature of Figure 4 is that both the

data and the simulations show that the sum of ball

and bat stiffness, k0 þ k1, is nearly independent of k0

over the region 10–18 kN/cm. This result can be

used to improve the effectiveness of the normal-

ization method by providing a prescription for

finding the stiffness of the bat when impacted by

the standard ball:

eS1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS1e

2
0S þ 1

1 þ rS1

s
ð7Þ

with the modified stiffness ratio:

rS1 ¼ rS þ
k0 2 k0S

k0S

ð8Þ

where rS is given by Eq. 5. Figure 3(b) shows the

values of eS1 obtained in this manner. The slope of eS1

versus k0 is reduced by a factor of nine relative to the

uncorrected values and a factor of three relative to eS.

It is perhaps surprising that both the data and

simulation show a ball stiffness independent of the

bat stiffness; i.e. the different bat profiles described in

Figure 5 might also affect the ball stiffness. A possible

explanation comes from the simulations themselves.

During impact, bat barrels with high stiffness will

tend to better hold their round cross-section,

resulting in higher deformation in the ball, both in

magnitude and rate. In contrast to the bat’s linear-

elastic response, the ball’s time-dependent nature

causes increased material stiffness as the strain rate

increases. Thus, a barrel with high stiffness impacting

a ball may result in lower ball stiffness (due primarily

to increased ball deformation from the bat retaining

its cylindrical shape) or higher ball stiffness (due

primarily to increased deformation rate). These

competing effects seem to offset each other, resulting

in no net change in ball stiffness within the accuracy

of the numerical model (Faber, 2010).

All of the results are presented as scatter plots in

Figure 6. This plot demonstrates clearly the spread of

uncorrected values (rms ¼ 0.036), along with the

improvement obtained by normalizing using eS
(rms ¼ 0.014), the further improvement using eS1

(rms ¼ 0.010), and the poor results using the BPF

technique (rms ¼ 0.038).

A practical application

While the experiment investigated a high-perform-

ance bat, a practical application of the normalization

technique applies to low-performance bats, such as

those mandated by the NCAA (2009). Low

performance means bats with very little trampoline

effect, which in the two-spring model means that

r @ 1. Under such conditions, e should be insensitive

to the precise value of r so that the following

approximate normalizing expression can be derived:

r @ 1approximation: eS <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ e2

0S 2 e2
0

q
ð9Þ

As a numerical example, consider a ball with e0 in the

range 0.45–0.49, with a stiffness ratio rS ¼ 25.8 and

a normalizing COR e0S ¼ 0.47. Over the range of e0,

the un-normalized COR varies from 0.481 to 0.518.

Using the exact expression Eq. 4, e normalized to a

constant value of 0.500 independent of e0. Using the

approximation expression Eq. 9, the normalized

value ranges from 0.502 to 0.498, a factor of ten

reduction relative to the un-normalized values. Thus,

the approximation works very well.

Summary and conclusion

We have presented a model of the ball–bat collision

that explicitly demonstrates the dependence of the

ball–bat COR e on the COR e0 and dynamic stiffness

k0 of the ball. We have used this model to develop

a technique for normalizing e to properties of a

standard ball. We have tested the model with a high-

performance softball bat. We have shown that the

dependence of e on e0 is removed by the normal-

ization. We have also shown experimentally that the

ratio e/e0, known as the BPF, depends on both e0 and

k0, as predicted by the two-spring model. Therefore,

it is not surprising that the BPF method fails to

normalize performance for the bat tested. The data

show that there is a strong nearly linear dependence

Figure 6. Scatter plot of all the data showing the distribution of

ball–bat COR un-normalized values and various normalized

values. Closely spaced points are displaced horizontally for clarity.
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of e on k0 and have shown that the normalization

technique, while not perfect, reduces that depen-

dence by about a factor of three. We have shown

through finite element simulations that the residual

dependence of eS on k0 is due to a dependence of k1

on k0. The simulations lead to an improved normal-

ization technique that reduces the dependence on k0

by factor of nine. Finally we have derived an

approximate normalization expression that is valid

for low-performing bats.
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