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One of the more remarkable developments in basabalysis in recent years is the
availability of pitch-tracking data, courtesy Spasbn, MLBAM, and the PITCHf/x
tracking system. These data allow us to recort witprecedented precision such
guantities as the pitch speed and the locatioom@iehplate. But even more importantly,
we have measures of quantities that we never hiadebeAs a result, we now have new
and novel ways to study the art of pitching.

A key ingredient of the new data is the movememd, that is the topic | address in this
article. Here is a preview of what follows. risti will define exactly what is meant by
the term “movement.” | then will discuss how thavement is extracted from the
PITCHf/x data and show that the current techniquelypces values for the movement
that are systematically shifted from the true valukwill discuss a different technique to
calculate movement that better conforms to oumitedn and give some examples of
how using this technique might affect our analygsipitches. An appendix contains all
the technical details.

Before delving into this topic, | should point dbat | first wrote about this in an article |
posted on my web site in the very early days ofRRECHf/x era (December 2007):
http://webusers.npl.uiuc.edu/~a-nathan/pob/Magmifis.palso discussed it at the first
PITCHf/x Summit in May 2008. The earlier articlaswvritten very much in an
academic style, with lots of technical details udgd. In this one, | will strive for a far
more conversational writing style so that it widgefully be accessible to a wider
readership.

So, what is meant by “movement”? Let me first gro@ a tentative definition. It is the
amount by which the trajectory deviates from aighdine. That is about the simplest
definition you could imagine and agrees with ougrgday concept of what we mean by
movement. | want to take this tentative definitasimy starting point and move on from
there. But first | have to bring up some physicsid. bpromise you | will keep it simple.

Newton’s First Law says that in the absence ofdsrobjects in motion will move at
constant velocity, meaning constant speed andstragght line. Said a little differently,
without forces acting on the ball, there is no nroeat, from which we can conclude that
movement is the result of forces. It is then redtto ask what those forces are. The
figure shows a side view of a ball moving horizdigtiom left to right, with a slight
downward angle, and spinning in the counterclockwiisection (commonly called
backspin). There are three forces acting on the Bast, gravity (i in the figure)

points directly downward and is the force respdesitr the apple hitting Sir Isaac on



the head. Next, air dragdFacts opposite to the direction of motion. Fipalhe so-
called Magnus force on the spinning basebal) (5 perpendicular to the direction of
motion, so it points upward and slightly to thehtig

FM Newton’s Second Law says that forces cause
accelerations; that is, they cause the velocity—
‘Fﬁ the speed and/or the direction—to change. So
o — let's examine the effect of the three forces in
‘”")/‘”‘*} ey detail. Since Falways acts opposite to the
direction of motion, it reduces the speed of the
ball but does not change its direction. FQr F
the opposite is true. Since it always acts
perpendicular to the direction of motion, it
FG changes the direction of the ball but not its
speed. Gravity is different in that it alwayssact
in the downward direction, regardless of the digecthe ball is moving. Thus, it
changes both the speed and the direction of the Bat a pitched baseball that is
moving mainly in the horizontal direction, the clgann speed is tiny, so the primary
effect of gravity is movement in the downward direa.

=

From the preceding discussion, we see that botM#dgnus force (fr) and gravity (k)
result in the pitch deviating from a straight lindowever, it has become conventional
among PITCHf/x analysts to remove the effect okijyaso that the vertical movement is
due entirely to the spin. The rationale for dainig is that the spin on the baseball, both
the rate of spin and the spin axis, is somethirdeunontrol of the pitcher whereas
gravity is not. Indeed, it is largely the combinatof movement due tofand release
speed that is used to classify pitch type for @gigitcher. Accordingly we modify our
tentative definition to arrive at the following jgree definition of movement:

» Movement isthe deviation of the trajectory from a straight line with the effect of
gravity removed.

Now, | realize that removing the effect of grawgems a bit arbitrary, even though there
might be good reasons to do it. Indeed, there wellybe analysis contexts for which it

is more useful not to remove the effect of gravijowever, for the present context,
removing gravity helps me illustrate my main paimdre clearly. In any case, the effect
of gravity is as easy to restore as it is to remswed will proceed with my gravity-
removed analysis.

With these ideas in mind, take a look at the nigikirés which show the trajectory of a
typical pitched baseball both from a side view $zy) and a top view (x vs. y). The
standard PITCHf/x coordinate system is used in ke origin x=y=z=0 is at the

corner of home plate, the y axis points towardgiteher, the z axis vertically up, and the
X axis to the catcher’s right. The pitch is typicha four-seam fastball thrown directly
overhand by a right-handed pitcher, with a releasge slightly downward and gloveside



and with backspin but no sidespin. The figuresastiee trajectory from the release point
(y=55 ft) to home plate (y=0 ft). First look aktkide view, in which the solid curve is

the actual trajectory and the dotted line is thgtitory expected if the ball moved in a
straight line from release to home plate. Théediince between the actual trajectory and
the dotted line at the front edge of home plaibigut -1.4 ft and is due to the combined
effect of gravity (which produces a large negativenber) and the backspin (which
produces a smaller positive number).
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The dashed curve is the trajectory the ball woaldetfollowed in the absence of gravity.
The difference between the dashed and dotted cigtbe quantity we are defining to be
the movement, the deviation from a straight linghvgravity removed, and is
approximately +1.2 ft. The fact that the movemergositive is exactly what one expects
for a pitch thrown with backspin, since the Magfurge is upward.

Next look at the top view showing the x-y plot. iF krajectory is the ultimate in
simplicity in that the ball follows a perfectly atght line from release to home plate.
Therefore there is no movement in the horizontaddion. But that is exactly what is
expected for a pitch with no sidespin. No sidesp@ans no sideways Magnus force
which means no sideways movement.

In summary, the pitch shown in the figure has aie@rmovement of +1.2 ft (14.4
inches) and a horizontal movement of O inches.

So, now that we have a precise definition of movetrigow do we determine it from the
PITCHf/x data? First a small digression. All thiech information that is publicly
available is determined from the so-called nineapueeter fit to the actual trajectory.

That is, each trajectory is parametrized by ninmipers: an initial location, an initial
velocity, and a constant acceleration for eacthefthree coordinates x,y,z. Using these
nine numbers, the full trajectory can be calculated all the interesting quantities (e.g.,
release velocity, home plate crossing, etc.) catebermined with the aid of some
standard physics formulas. These formulas acewssd to calculate the movement.
Let’s take a closer look at how that is done.

As we have discussed, forces cause acceleratioich @éin result in movement. So it
might seem natural to use the x and z accelerafioitis gravity removed) to calculate



the x and z movements. In fact, that is exactlgiwh done and | will hereafter refer to
this as the “standard procedure.” Now comes #&yepoint in this whole discussion.

The standard procedureiswrong! That's a pretty strong statement, so | want tangm
some detail as to why it is wrong and how one aabetter, using the trajectory we have
already discussed as an example.

First look at the top view (the x-y plot) of thgdire above. Remember that this
trajectory was calculated assuming no sidespirerdfbre no movement is expected in
the x direction. The fact that the x-y plot isteaght line shows that there is indeed no
movement. Now look at the left figure below, whehave plotted the magnitude of the
x and y velocities as a function of time. The féett both are decreasing shows that
there is an acceleration in both the x and y dmast Now look at the right figure, where
| have plotted the ratiodvy plotted as a function of time. That ratio doesciwinge.

The constancy ofyvy means that although the velocity in both the x yadéections is
decreasing, thdirection of the ball in the horizontal plane is not chamgin
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This behavior is exactly what one expects if theedaration is due entirely to drag,
which results in a change of speed but no change&dtion. There is an acceleration
but no movement. The standard procedure wouldhaeacceleration, which is in
the —x direction, to infer a movement in the —edtion. So, we have a ball that has no
sidespin and travels in a perfectly straight liméhe horizontal plane, yet the standard
procedure tells us there is a movement in the rection. The standard procedure
surely has gotten it wrong. But the good newsas this example tells us exactly what
we have to do to get it right. We need to remdnedontribution of drag from the
acceleration, just as we have already removedfteet ®f gravity, then use that to
calculate the movement. My technique for doing-theall it the drag-corrected
technigue—is described in the Appendix.
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Having established that the standard procedureasgy let's now try to quantify how
large a mistake is made if the drag is not remavieein calculating the movement. |
compare the current and drag-corrected techniquesatch of the 4324 pitches thrown
throughout MLB on September 15, 2012, with movemeatculated between y=50 ft



and the front edge of home plate.
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The difference between the standard and drag-dedeésovement is presented in the
figures for both the x and z movements. For th@zement, there is a systematic shift
toward positive values with a mean of about 1.7he reason is very clear. Since the
average z velocity is always negative (the ballegfsvdrops between release and home
plate), the z component of drag is always posifeading to a positive contribution to
the z acceleration. For the x movement, theresigsgematic shift of +1” for LHP

and -1” for RHP. Once again, the reason is clédtP and RHP generally release the
ball with a negative and positive horizontal vetgciespectively, leading to the results

found. The relationship between the sign of th# ahd the sign of the average velocity
components is discussed in the appendix.

These systematic shifts have some interesting qoesee for baseball analysis. For
example, typically 4-seam and 2-seam fastballs bate upward and arm-side
movement, both of which are overestimated (in ntagei) by the current technique,
leading to a systematic overestimate of the ratatae of the ball. On the other hand, a
curveball typically has both downward and gloveesigovement, both of which are
underestimated by the current technique, leadiraydygstematic underestimate of the
rotation rate of the ball. Another interestingeple comes from splitters/forkballs, a
topic that Mike Fast wrote about in his Decembet®Baseball Prospectus article
(http://www.baseballprospectus.com/article.php?@iic12558. Generally these
pitches are thrown with very little spin, leadirgvery small movement, especially in the
vertical direction. But the pitches are thrownyvdifferently, as Mike discusses in the
article: A splitter has backspin and a small am@fimpward movement, while a
forkball has topspin and a small amount of downwaayement. With a systematic
upward shift of a few inches using the current teghe, it would be easy to incorrectly
identify a forkball as a splitter. It is perhapsrih pointing out that Mike utilized drag-
corrected movements in his analysis, even thougioke not indicate so in his article.
Finally consider a cut fastball, which typicallysha small amount of glove-side
movement, the magnitude of which is systematiaatigerestimated by the current
technique. Using the drag-corrected technique twigii change our perspective about
the effectiveness of this pitch.




So, let me summarize the contents of this arti€liest | give a careful definition of what
is meant by movement. Itis a common-sense defimitthe deviation of the trajectory
from a straight line, with the effect of gravitymeved. Next, | show that the standard
procedure calculates the movement in a mannedtes not conform to that definition
because the effect of drag on the accelerationadtadseen removed. In the appendix |
show a technique for calculating the movement¢batects this shortcoming. | show the
typical size of the mistake that is made by ushrggdtandard rather than the drag-
corrected method. Finally, | discussed a few focakimplications for baseball analysis.

| thank Dan Brooks and Harry Pavlidis for encounggne to write this article. | thank
both Dan, Mike Fast, and Tom Tango for a critieglding of an earlier draft. | also
thank Mike for reminding me of his earlier work syplitters/forkballs. Finally | want to
acknowledge lke Hall, who contributed to my ear&gicle on this subject.

APPENDIX: Technical Details

To determine the movement of a pitched basebadl,necessary to isolate the part of the
acceleration that is due to the Magnus force. @ thdt requires removing the
contributions due to gravity (this is easy) and tudrag (this is harder). | now outline
how to do that.

| start by writing the acceleration vector as tamf the three contributing parts:

a =?BD +*§51 +(, where D and M refer to drag and Magnus and hasatceleration
due to gravity. The first thing to realize is ttia¢ drag is always opposite to the velocity
whereas the Magnus force is perpendicular to thecitg. The tricky part is that neither
the magnitude nor the direction of the velocitgamstant during the trajectory, yet we
have assumed the acceleration is constant by doggP fit. In fact, the 9P fit
determines thaverage acceleration. We will assume that the drag isctiribution to
the average acceleration, with g removed, whichrectly opposite to thaverage

velocity vector(f/> . Mathematically, the drag contribution to ther@ge acceleration is
the projection of the acceleration vector, wittegioved, in the-(V) direction. That is,

8 =4(a-9uy
this expression (along with g) from the accelerati®utting this all together, we arrive at
the following expression for the x and z componafthe Magnus acceleration:

("y. Therefore to remove the contribution of drag,simply subtract

8, =8 +|(*a:¢m»+|<<v7>;

ay, =8 +¢ H(”af)ﬂwrg;




For either the x or z directions, the movemen, /2, where t is the flight time. In the
standard calculation of movement, the last terntherRHS of these expressions is
omitted. It is precisely that term that is neettedemove the contribution of drag.

The structure of these equations makes it cleathleasign of the omitted terms is the
same as the sign of the average x or z velocitis said differently, the sign of the error
made by omitting these terms is the opposite ofite of the average x or z velocities.
Given that the x and z components of the averalgeite are simply equal to {x xg)/t

and (z- zo)/t, the sign of the correction depends entirelytendifference between the
final and initial locations of the ball in the x@ma directions. By the way, if it is desired
to include the effect of gravity in the vertical wemnent, simply omit the first g in the
equation for z.

By solving exactly the equations of motion for thegectory of the baseball, one can
calculate the movement (as | have defined it) éxadthat calculation can be compared
with the technique just described. | have madedbaparison for the 4324 pitches
thrown on September 15, 2012, and the results {cvagcted minus exact) are shown in
the figure below. While the drag-corrected techrigs still not perfect, the errors have
been reduced considerably compared to the cugehhique and are almost surely at a
level suitable for baseball analysis.
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| have put together a spreadsheet template farulesiing the drag-corrected movement.
To use the template, simply enter the 9P fit patarsd, ...,&) into columns A-l. The
drag-corrected movement in inches (dx and dz) aleitated in columns X and Y. For
comparison, the current technique for movemendlisutated in columns Z and AA.
Both are calculated from a starting poigtyto the front edge of home plate. The
standard method usega=40, but you are free to specify whatever value ljaifor
Ystartin Cell E3, in units of feet. The template cardogvnload at
http://webusers.npl.illinois.edu/~a-nathan/pob/MoeatTemplate.xls




