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Abstract 

Aerodynamic drag on sports balls is typically measured in wind tunnels. There is a concern that fixtures needed to support the 

ball in a wind tunnel may influence its drag. Measurements under game conditions have been attempted, but are difficult to 

interpret from the data scatter and are not controlled. The following considers drag measurements from a ball propelled through 

static air in a laboratory setting. High speed light gates were used to measure drag, including the effects of ball rotation. Drag was 

observed to depend on the ball speed, rotation, roughness, and orientation. A so-called drag crisis was observed for a smooth 

sphere and was comparable to wind tunnel data.  Rough sports balls, such as a baseball, showed evidence of a small drag crisis 

that was less apparent than the smooth sphere.   

 

© 2009 Published by Elsevier Ltd. 
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1. Introduction 

 Understanding the flight of a ball involves two aerodynamic properties, lift and drag.  Lift can be described as 

the force, not including gravity, on a ball that is directed perpendicular to the ball’s trajectory. Drag is the force, Fd, 

in the direction opposing the ball’s flight path [1].  The drag coefficient, Cd, is found from [2]  

 

  (1) 

 

where ρ is the density of air, A is the cross sectional area of the ball, and V is the speed of the ball. Drag is a function 

of surface roughness, velocity, and orientation of the ball.  It is convenient to use a non-dimensional form of 

velocity, expressed in terms of the Reynolds number, Re, defined by 

 

   (2) 
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Figure 1 - Flow over a smooth cylinder: (a) Re < 3x105, flow stays laminar in the boundary layer until 80° where it separates; (b) 

3x105 <  Re <  3x106, flow separates at 80° becomes turbulent and reconnects before separating again at 120 degrees; (c) 3x106 < 

Re, flow is turbulent in the boundary layer on the front and stays turbulent until separating at 120°. The stagnation point is 

identified by “X” in each figure. 
 

where D is diameter of the ball and υ is kinematic viscosity of air. The effect of speed on drag can be described by 

three characteristic ranges, as illustrated in Figure 1.  At low Reynolds number, (a), flow is laminar until separation 

occurs at roughly 80° from the stagnation point [3].  When the Reynolds number is increased, region (b), the 

separation region becomes turbulent and attaches itself again, carrying the separation point to the backside of the 

ball to about 120° from the stagnation point.  As the separation point moves to the back of the ball, drag is reduced. 

The reduction in drag can be large and occur over a small change in the Reynolds number. Region (b) is referred to 

as the Drag Crisis, and often occurs at game speeds.  As the Reynolds number is increased further, region (c), the 

flow becomes completely turbulent in the boundary layer just after the stagnation point, causing the drag to increase 

again. 

The drag crisis has been observed on a smooth sphere for many years.  Millikan and Klein [4] explored the drag 

crisis in their free flight test finding Cd on a smooth sphere as low as 0.08.  Achenbach [5] analyzed how surface 

roughness on a sphere can change behaviour in the critical Reynolds region.  His data suggested that as surface 

roughness increased on a sphere the drag crisis was induced at a lower Reynolds number and was less severe.  

Frohlich [6] also analyzed how surface roughness can change the behaviour of the drag crisis.  Frohlich went on to 

explain if a baseball acted like a rough sphere, the drag crisis could help explain the behaviour of pitched or batted 

baseballs. Alaways, Mish, and Hubbard [7] analyzed baseball pitches by triangulating ball location from video taken 

during the 1996 Summer Olympic Games. Their data showed evidence of a drag crisis with a drag coefficient as low 

as 0.16.  An improved video tracking system involving Major League Baseball (PITCHf/x) [8] showed little 

evidence of a drag crisis, however.    

The effect of ball rotation has primarily been directed towards lift.  To the authors’ knowledge, the only study 

involving rotational drag on a sports-like ball is that of Bearman and Harvey who rotated dimpled spheres 

resembling a golf ball in a wind tunnel [9].  They found drag increased with rotation.  Mehta attributed the drag 

increase with lift effects [10].  

The following considers the effect that surface roughness, velocity, orientation and rotation have on the drag 

force.  The study was conducted in a laboratory setting to improve the accuracy of drag measurements over that 

achievable in game conditions.  Balls were projected through static air to avoid interaction with ball support devices 

used in wind tunnel experiments. 

2. Methods and experimental setup 

The change in ball speed was found using two light boxes that measured both the position and speed of the ball.  

The study examined six different sports balls.  The translational velocity ranged from 17.9 m/s to 60.8 m/s.       

A pneumatic sabot style air cannon was used to project baseballs with no rotation to study the effect of seam 

orientation.  A high speed video camera (1000 fps, 10-4 s shutter speed) was used to record each shot to verify 

correct orientation and flight path.  A three wheeled pitching machine (HomePlate, Sports Tutor) was used to project 

balls with controlled angular velocity.  The three wheels were oriented 120° apart with the lower wheel aligned in 

the vertical direction.  Tracking software was used to determine the angular velocity of each pitch.   
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Figure 2. Diagram showing arrangement of pitching device and light boxes used to measure ball speed and location. 

  

 Once the ball was released from the pitching device, it began its path through the light boxes.  Each box had an 

opening of 0.367 meters by 0.495 meters to allow enough room for a ball to enter and exit without contacting the 

inner walls.  Each light box consisted of three pairs of light gates (Ibeam, ADC) as shown in Figure 2.  Each light 

gate was rigidly mounted and levelled inside the light box.  Velocity was found from the two vertical gates placed 

0.419 meters apart.  Lift was found from the change in the ball’s vertical position, which was measured from the 

light gates mounted at 45°.   

The light boxes were placed between 4 and 5 meters apart. Balls travelling at lower speeds used the closer light 

box spacing, while high ball speeds used the larger light box spacing.  The change in velocity between the boxes 

ranged from 0.5-1.75 m/s.  The light boxes were squared to each other and the pitching machine using a laser level.  

The drag force, Fd, was found from [11]   

 

  (3) 

 

where V1and V2 are the speeds from the first and second light boxes, respectively, m is the ball mass, and d is the 

distance between the light boxes.   

3. Samples 

The sabot style air cannon allowed ball orientation to be controlled.  Two different orientations of the baseball 

and cricket ball were used.  As shown in Figure 3, a normal orientation positioned stitches perpendicular to the 

airflow and a parallel orientation positioned stitches parallel to the air flow.  The study comprised baseballs, 

softballs (89 and 97 mm diameter) cricket balls, golf balls and smooth spheres.    

 

   

Figure 3. Diagram showing the normal (a) and parallel (b) orientations. Black arrows indicate the airflow direction, white arrows 

indicate the ball rotation axis. 

 

a a b b 
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Figure 4. Coefficient of drag for all test balls. 

4. Results 

The drag coefficient (without ball rotation) is shown for all the sports balls from this study as a function of 

Reynolds number in Figure 4.  The drag crisis is most apparent for the golf ball and smooth sphere.  The drag crisis 

of the smooth sphere is comparable with previous work [5], but had less magnitude and occurred at a lower 

Reynolds number (2x105 vs 3x105) [5].  As expected, the dimpled surface of the golf ball caused a drag crisis at a 

lower Reynolds number than the smooth sphere.  The optimized dimple pattern of the golf ball appears to help 

maintain the relatively large magnitude of its drag crisis.  While the stitched balls (baseballs, softballs, and cricket 

balls) show Cd decreasing with increasing speed (Figs. 5, 6, and 7), the magnitude of their “drag crisis” was 

significantly smaller than the smooth sphere and golf ball.   

 The study included balls with flat and raised stitches.  Scatter in drag was larger for the balls with raised seams 

(NCAA baseball and 89 mm softball). The arrangement of the stitches likely plays a role in the drag crisis.  As 

shown in Figure 1, the drag crisis is a result of turbulence developing in the boundary layer of the ball.  The stitches 

trip the boundary layer earlier than a smooth sphere inducing turbulence and moving the flow separation point to the 

backside of the ball.  In the normal orientation, the stitches are close to the flow separation point, which is 

apparently fixed to the stitch location for balls with raised seams. For smooth spheres, the separation point (and 

drag) depends on the air speed.  For balls with raised seems, the separation point (and drag) depends on variation in 

ball orientation and air speed. It is not surprising, therefore, that the parallel orientation of the cricket ball exhibited 

the largest drag crisis; as the stitches are removed from the separation point in this orientation, providing a relatively 

smooth flow surface.   
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    Balls with raised seams (NCAA baseball and 89 mm softball) exhibited a higher relative Cd and a drag crisis at a 

lower relative Reynolds number.  Both trends are consistent for balls of higher relative roughness.   

The effect of spin on  Cd  for baseballs and dimpled pitching machine balls are shown in Figure 8.  The 

translational velocity for the rotating balls ranged from 27 to 44 m/s with angular velocities from 22 to 4731 rpm.  

The balls were rotated in a normal or 4-seam orientation as defined in Figure 3.  The rotational and linear velocities 

were normalized according to [12] 

  (4) 

 

where S is the spin factor,   is the angular velocity, and r is the ball radius.  Similar to rotating dimpled spheres 

observed elsewhere [9], drag on a baseball was observed to increase with spin but with less magnitude.  While the 

effect is small, it is measurable and affects the ball flight. The NCAA ball had an average Cd of 0.34 and 0.41 for 

non-rotating and rotating conditions, respectively. To illustrate the effect of rotation on drag, the dimpled pitching 

machine ball without rotation is included in Figure 8 over the same translational velocity range as the rotating balls.   
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Figure 5. The drag coefficient of NCAA baseballs in the normal 

and parallel orientations. 
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Figure 6. The drag coefficient of cricket balls in the normal and 

parallel orientations. 
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Figure 8. Drag coefficient of baseballs rotating in the 

normal and parallel oreintations compared to a dimpled 

baseball. 
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Figure 7 – Drag coefficient of MLB baseballs in the parallel 

orientation. 
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   Pitched balls (including knuckleballs) usually have some rotation and therefore do not achieve the low Cd 

observed in Figure 7.  Thus, in play one should expect pitched balls to have a drag coefficient between 0.3 and 0.4.  

However for pitchers like Tim Wakefield, who can deliver a ball with no rotation, a pronounced drag crisis is more 

likely to occur, where the  Cd  could be as low as 0.26.     

 

5. Concluding remarks 

The preceding has considered the drag of sports balls obtained by projecting the balls through still air. A sabot 

style air cannon provided ball controlled orientation without rotation, revealing the sensitivity of drag to the stitch 

orientation.  The drag of non-rotating balls was comparable to previous experiments.  Smooth spheres, golf balls, 

and balls with flat seams showed a strong drag crisis, while raised seam balls showed only a weak drag crisis.  

Rotation had a measurable effect on drag, increasing the average Cd  on a baseball by 20%.    It is difficult to pitch 

baseballs with no rotation.  Hence, most baseball pitches will have a  Cd   of 0.35 (the average drag observed for 

rotating balls).   
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