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Abstract

The objective of this thesis is to investigate if it is possible to use stereo vision to
find and track the players and the ball during a football game.

The thesis shows that it is possible to detect all players that isn’t too occluded
by another player. Situations when a player is occluded by another player is solved
by tracking the players from frame to frame.

The ball is also detected in most frames by looking for ball-like features. As
with the players the ball is tracked from frame to frame so that when the ball is
occluded, the positions is estimated by the tracker.

Keywords: Stereo vision, Football, disparity estimation, camera calibration.
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Notation

This section describes special symbols, variables and common abbreviations used
throughout this thesis.

Symbols

x̄ Vectors.
x̂ Identity vectors.

θ̂ Parameter vector.

Variables

sx, sy Width and height of image plane.
su, sv Width and height of image.
fovs, fovh Horizontal and vertical field of view.
f Focal length.

Abbreviations

Baseline The line between the left and the right camera in a stereo pair.
Epipolar line The line connecting the centers of projection in two cameras.
Quadrature filter A filter with no DC component and no support in the negative frequency domain.
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Chapter 1

Introduction

1.1 Background

This thesis has been performed at the department Sensor Systems at SAAB Bofors
Dynamics in Linköping, Sweden. The thesis is the last year’s work for a master’s
degree in Computer Science and Engineering at Linköping University, Sweden.

In the late 2003, a former board member of the Swedish football association,
Robert Hernadi, had a vision of an image processing system to track football players
with the goal to detect offside situations. Robert H. together with a Swedish
broadcasting company, Hego AB, contacted Saab Bofors Dynamics AB (SBD) with
a wish of an evaluation of such a system. From negotiations between SBD and
Robert H./Hego AB it was decided that a thesis should be written in the subject.

1.2 Objective

The objective of this thesis is to investigate if it is possible to implement a system
for tracking all the players and the ball on a football pitch. Since the pitch is so
large, several cameras have to be used in a real system. In this thesis a limitation
is set to only cover a part of the pitch. The cameras that will be used is standard
digital CCD cameras. During calculations every other line in the images will be
ignored due to the interlace.

1.2.1 Goal

Three reference scenes was selected. These scenes was to be used to show that the
system was able to track the players and the ball in this configuration.

The first scene contains two players running with the ball towards the goal.
This scene is quite simple and contains no occlusion. The purpose of the first scene
is to show that the players can be tracked as well as to evaluate the tracking of the
ball.

3



4 Introduction

The second scene also contains two players, the players are occluded during
some frames. The purpose of the second scene is to show that the players can be
tracked during occlusion.

The third scene is a model scene where the position of all the players is known
(with some degree of correctness). The purpose of the third scene is to show the
error in position measurement.

The following goals has been defined for this thesis in terms with the commis-
sion.

• Find a working camera setup that can cover the entire pitch.

• Locate and track the players in the reference scenes.

• Locate and track the ball in the refrence scenes.

Limitations

The following limitations has been set for this thesis:

• The cameras only covers a part of the pitch (since only two cameras was
available for testing).

1.3 Applications

There are a huge number of applications for a system like this. The intention
is as said, that the system should be used by broadcast companies to be able to
automatically monitor a football game. However the system is much more usable
than that. It can for example be a great tool for the coaches for post-game analysis,
or to gather information for game statistics. Since every player can be tracked, all
sorts of information can be collected, total running distance, maximum speed,
average speed, the time a player has the ball etc. The possibilities are almost
endless.

1.4 Similar work

Systems that aim to solve the same problem as this thesis has recently started
to appear on the market, some of these system uses transponders attached to the
players to triangulate the position of each player (and ball) during the game. These
systems have proved to be very expensive and requires that antennas are installed
around the arena. A German company called Cairos has developed just such a
system.

In 2003 Daniel Setterwall (KTH) did a masters thesis with roughly the same
goal as this thesis ([9]). The goal for Setterwall in his thesis was to find a method
to use computer vision to find and track football players. The solution for tracking
the players here was to use template tracking (the tracking is done by searching
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for each player with a template or model of that particular player). This methods
biggest problem is occlusion. Since the cameras are often placed quite low, players
tend to occlude each other very often.

There are a number of commercial companies that are offering football player
tracking using computer vision. Two of the biggest companies is ProZone ([8])
and Sport Universal ([11]). It is not clear exactly how the tracking is done in
these systems. ProZone uses several cameras placed around the pitch and delivers
statistics of ball posession, pass maps and distance for each player and much more.
The information is not however in real time. Sport Universals system is very similar
to ProZone but delivers statistics in real time. Both these systems have in common
that they are very expensive thus they are targeting the major leagues and larger
football clubs.

1.5 Document overview

The thesis is divided into 4 parts. Part 1 is the introduction to this thesis. Part
2 describes the basic theory that this thesis is based on. Part 3 describes the
implementation and the decisions made to realize the system. Part 4 contains an
evaluation which describes the performance of the system and at last a summary.
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Chapter 2

The camera model

In order to measure distances between objects in a image you need a model of the
camera that accurately mimics the physical properties of the real camera. Several
types of camera models exists, two of them are described in this section. Figure
2.1 shows the coordinate systems that are of interest for these camera models.

Figure 2.1. Camera model

• Ow, World coordinates [xw, yw, zw].

• Oc, Camera coordinates [xc, yc, zc].

• Of , Image plane coordinates (Also known as focal plane) [xf , yf ].

• Oi, Image coordinates [ui, vi].

9



10 The camera model

The world coordinates is the most basic coordinate system, all other system will be
defined in relation to this one. The world coordinate system is situated somewhere
on the football pitch which causes the pitch to have zero height (z = 0), this
is convenient when selecting points for calibration as will be described in a later
chapter.

Camera coordinates is unique for every camera (since each camera has a unique
orientation), it is described in relation to world coordinate system.

Image plane coordinates is also unique for every camera, it is essentially the
same coordinate system as camera coordinates but in two dimensions. The scaling
of the image plane coordinates is always the same as for the camera coordinates.

At last there is Image coordinates. Image coordinates is, like image plane co-
ordinates, two-dimensional. Image coordinates is essentially the same coordinate
system as image plane coordinate system with the exception of different scaling
and translation.

2.1 Parameters

A camera model is defined by a set of parameters that is used to model the cam-
era. The parameters is usually divided into two categories, intrinsic and extrinsic
parameters.

2.1.1 Intrinsic parameters

Intrinsic parameters are those that controls the physical properties of the camera.
These are usually one or more of the following (others exists as well).

• Focal length.

• Image plane size.

• Lens distortion, measured as a radial distortion.

• Image plane displacement, measured as displacement from the optical axis.

2.1.2 Extrinsic parameters

Extrinsic parameters are those that controls the physical location of the camera.
These can also be represented in many ways, but one of the more simple ways
is to use a location vector and Euler angles. The parameters is given in world
coordinates.

• Camera rotation.

• Camera location.
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2.2 Pinhole camera

The pinhole camera is one of the most basic camera models. This camera model
is often used in computer graphics since it is so simple to use. The pinhole camera
does not use sophisticated intrinsic camera parameters such as lens distortion and
image plane offset.

Figure 2.2. Model of the pinhole camera

The geometry of the camera model gives the following basic relation between
a point in camera coordinates, p̂ = (xc, yc, zc)

T , and the image plane coordinates,
p̂′ = (xf , yf)T

xf =
f · yc

xc
(2.1)

yf =
f · zc

xc
(2.2)

This gives the common pinhole camera equation, which describes the projection
of a point in camera coordinates to the image plane.
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2.3 Lens distortion

Real images usually suffer from lens distortion effects. This is especially noticeable
when a lens with a short focal length is used. The effect is often referred as the
fisheye effect. The picture below shows how a image of a grid is distorted by the
lens.

Figure 2.3. Different types of lens distortion. (a) No distortion. (b) Barrel distortion,
common on regular cameras. (c) Pillow distortion.

The pinhole camera model does not model this effect. Thus some modifications
has to be done to the model. The parameter for lens distortion in the intrinsic
parameters is used to describe this effect. Lens distortion is usually modeled as
a radial displacement, that is, a displacement that only depends on the distance
from the image centre. This radial distortion can have many mathematical defi-
nitions, many researchers ([13] for example) use a polynomial function to model
the displacement. The position in the image [r, θ] acquired by the pinhole camera
model, is corrected by the radial function to [r′, θ′] according to equation 2.3 and
2.4

r′ = r

N
∑

i=0

kir
i+1 (2.3)

θ′ = θ (2.4)

2.4 Other distortion factors

During the manufacturing of the cameras it is almost impossible to exactly line the
image plane (the CCD chip) with the centre of the camera. This causes the centre
of the image plane to be out of alignment. To counter this effect two more intrinsic
parameters are introduced, the offset of the image plane (cx and cy).

x′′ = cx + x′ (2.5)

y′′ = cy + y′ (2.6)
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Where x′ and y′ are the coordinates after correction for radial distortion. The
local coordinate system is shifted according to the offset giving the final corrected
coordinates, x′′ and y′′.

2.5 The complete camera model

The camera model used in this thesis uses a combination of the pinhole camera
model and the lens distortion model. This gives a quite accurate model of a real
camera.

Both the pinhole model and the lens distortion can be combined which leads to
the following relation between a camera coordinate (xc, yc, zc) and the resulting
image coordinate (xi, yi).

x0 =
fyc

xc
y0 =

fzc

xc
(2.7)

r0 =
√

x2
0 + y2

0 θ0 = tan−1(y0/x0) (2.8)

r1 = r0 + k′

2r
3
0 + k′

3r
4
0 θ1 = θ0 (2.9)

x2 = c′x + r1 · cos(θ1) y2 = c′y + r1 · sin(θ1) (2.10)

xi = x2 ·
wi/2

sx/2
+ wi/2 yi = y2 ·

hi/2

sy/2
+ hi/2 (2.11)

In this thesis these equations is rewritten with the following substitutions.

sx

2f
= tan (fovs/2)

sx

2f
= tan (fovs/2) (2.12)

k2 = k′

2f
2 k3 = k′

3f
3 (2.13)

cx = c′x/f cy = c′y/f (2.14)

Redefining the camera parameters produces the final model as defined below.
The reason for these substitutions is that the camera model is then valid even if
the images are rescaled.

x0 =
yc

xc
y0 =

zc

xc
(2.15)

r0 =
√

x2
0 + y2

0 θ0 = tan−1(y0/x0) (2.16)

r1 = r0 + k2r
3
0 + k3r

4
0 θ1 = θ0 (2.17)

x2 = cx + r1 · cos(θ1) y2 = cy + r1 · sin(θ1) (2.18)

xi = x2 ·
wi/2

tan(fovs/2)
+ wi/2 yi = y2 ·

hi/2

tan(fovh/2)
+ hi/2 (2.19)
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The polynom used in the lens distortion is here defined as r1 = r0 +k2r
3
0 +k3r

4
0 .

The reason for choosing this definition is that it has been used previously in other
projects at SAAB Bofors Dynamics so much of the code for implementation was
already done. Experience with the older projects also shows that this function
models the camera very accurately.



Chapter 3

Stereo vision

Stereo vision is a technique to calculate a depth image from two or more camera
views. Stereo vision has several applications and one of the more obvious is to be
able to get an object’s distance from the camera.

Most stereo algorithms rely on specific rules that define how the cameras have
been mounted, this is usually called canonical configuration and is defined in the
next section.

3.1 Stereo geometry

A stereo geometry is formed by placing two pin-hole cameras with the same focal
length in a so called canonical configuration. This means that the two cameras are
shifted sideways by a distance called base distance. The camera image planes and
optical axes are parallel.

Figure 3.1. Two cameras in a canonical configuration.

If a point in space is considered at the coordinate p = (X, Y, Z)T . The following

15



16 Stereo vision

relation comes directly from the geometry (b is the camera base, the distance
between the two cameras).

b/2 + X

Z
=

xl

f
(3.1)

b/2 − X

Z
=

xr

f
(3.2)

Adding these equations together and defining d = xl−xr produces the following
equation.

Z =
bf

xl − xr
=

bf

d
(3.3)

Thus if it is possible to detect how much one pixel in the left image has moved
sideways to the right image, it’s simple to calculate the depth of the corresponding
point.

There are however a few problems with this definition. First, according to
the definition, both image planes must be parallel. This is usually not practical
nor possible to achieve. Secondly, the definition builds on the pinhole camera
model, since a real camera is subjected to lens distortion and centre of projection
displacement this will not be accurate. One solution to both these problems is
called image rectification.
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3.2 Image rectification

As mentioned earlier, image rectification is a process to transform the two images
in a stereo pair so that the epipolar lines becomes collinear and parallel to the
horizontal image axis (see figure 3.2).

Figure 3.2. a) Non-collinear epipolar geometry. b) Collinear epipolar geometry.

These images can be thought of as being acquired by a new stereo rig with
pinhole cameras that are already parallel as defined in the previous section. This
rectification process also deals with the fact that lens distortion is present.

Figure 3.3. Two cameras in a more common configuration.

Many researchers ([5] and [7] for example) use the image rectification process
as figure 3.3 shows. A rotational matrix is created that rotates the image planes
so that they become collinear. From this matrix a warp function is produced that
transform the old image plane to the new one. The resulting rectified image is
similar to the original image but a little distorted. This method does not however
deal with lens distortion.
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3.2.1 Ground plane rectification

For this thesis the new image planes are not chosen in this way. As figure 3.4
shows, the image planes are chosen to be the same for both left and right camera
and that it is located in the ground plane. There are two reasons for chosing this
image plane. The first reason is simply that the transformation from the original
camera view to the new image plane is very simple and can be performed very fast.
The second reason is that the disparity becomes very limited for objects that are
of interest. Objects that are located on the ground plane has no disparity, objects
that are above the ground plane gets more disparity the higher the object is in
relation to the ground plane. Since the players on the pitch always is quite near
(< 2.5m above) the ground plane, the disparity is very limited.
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The new image plane is also rotated around the z-axis to align the x-axis with
the camera base. This ensures that the disparity only will occur along the image
u-axis.

Figure 3.4. Rectification as done in this thesis.

The resulting rectified images for the left and right camera are shown in figure
3.5. Note that the lines that lie in the ground plane are identical in both images.
The images also shows that the goal which does not lie in the ground plane is
shifted sideways between the two images.

(a) (b)

Figure 3.5. (a) Left rectified camera view. (b) Right rectified camera view.
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3.3 Disparity estimation

There exists many ways to estimate depth from stereo images, most of them depend
on the restrictions defined in section 3.1.

Correlation based stereo is probably the most simple way of calculating dispar-
ity, it is therefore also the most widely used method. As the name foretells cor-
relation based stereo uses correlation to estimate how much each pixel has moved
from one image to the other. The most intuitive way of implementing this is by
using area correlation (see [10], [14] and [15]), this method is however extremely
slow in comparison to other available methods.

An approach using local polynomial expansion was developed by [4]. This
method expands every N×N region in both images with a polynom of degree 2. The
disparity is then estimated by calculating the change in the polynomial coefficients.
This method is faster than the correlation based method, but the result was not
as good (on our test scenes, this is not however the general case).

Phase based disparity is a technique based on the Fourier shift theorem, which
basically says that a small shift in spatial domain results in a relative small change
in the signals phase. The phase of the signal is estimated using a quadrature filter.
More information about different quadrature filters can be found in [12] which also
has an extensive view over how phase based stereo works. Phase based disparity
with a Non-ringing quadrature filter (defined in [12]) will be used in this thesis for
all disparity estimations.There are several different quadrature filters to chose from
but the Non-ringing filter is good since it has small spatial support, thus leads to
fast calculations.

3.3.1 Phase based disparity estimation

Phase based disparity estimation is a method to calculate the shift between two
stereo pair (that are rectified).

The method is based on the fact that a sideways spatial shift in the image results
in a relative shift in the local phase. Local phase describes local edge symmetry
independent of absolute gray value. By calculating the local phase in both stereo
pairs the difference in local phase at each point results in an estimation of the
disparity between the two pairs.

The method can not estimate a disparity that is too large. Therefore it is
common to do the calculations in a resolution pyramid. This means that the
estimations is first done in the coarsest resolution, the result is then used to shift
the input the the next resoltion level thus reduces the disparity with each level.
The method is defined in detail in [12].
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Chapter 4

Camera calibration

In order to perform any measurements with a camera, all parameters in the cam-
era model has to be known. Camera calibration is a procedure to extract these
parameters. This procedure is performed for all cameras and all lenses because
the model can (and usualy do) vary from camera to camera and lens to lens. The
parameters are divided into intrinsic and extrinsic parameters as mentioned earlier,
all of which have to be estimated.

The intrinsic parameters that the model contains are:

• Field of view (vertically and horizontally, fovh and fovs).

• Lens distortion coefficients (k2 and k3).

• Image plane offset (vertical and horisontal offset of the CCD sensor, cy and
cx).

The extrinsic parameters are:

• Camera rotation (φyaw , φpitch, φroll).

• Camera location (xcam, ycam, zcam).

As described in the first section the calibration procedure is separated into two
procedures, offline and online calibration. Offline calibration is performed once for
every camera (usually in a lab) while online calibration is performed continously
while the system is running.

23



24 Camera calibration

4.1 Offline calibration

The offline calibration is used to calibrate parameters in the camera that won’t
change while the camera is in operation. These parameters are field of view, lens
distortion and image plane offset. Since these parameters just have to be calibrated
once it is possible to use a quite extensive procedure for them.

At SAAB an inhouse tool has been developed that is used to create panorama
images. This tool can also be used to perform offline calibration. The calibra-
tion starts with an operator taking several pictures while rotating the camera and
holding the camera focal point in the center at all times (see figure 4.1 and 4.2).

Figure 4.1. Three camera positions, each rotated around the local z axis.

The goal is now to estimate the intrinsic parameters as well as the rotation
about the z-axis (the rest are not relevant). The parameters are initialized to a
rough estimate set by the operator.

For every adjecent pair of images the program warps one image onto the other
using the current camera model.

Figure 4.2. The overlap between three images.

If the camera parameters were perfect, the common part of the two images
would be the same. Since this is usually not the case the two images will be spa-
tially shifted and differently distorted. The total absolute differance between the
two images is a good estimate of how correct the parameters are. The common
area is divided into several sub areas (3x3 for example). Using area-correlation
the program calculates how much each of these sub areas have to move in order
to minimize the total absolute differance. The program tries to minimize the dis-
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tance that the sub areas have to move, and if they don’t have to move at all, the
parameters are correct.

When taking the pictures the operator takes a full 360◦ panorama view. Since
the images are taken in all directions, the horizontal field of view is uniquely defined
and is estimated with very high precision.

At last an image taken from a view rotated 90◦ about the cameras x-axis is
included. This causes the width-to-height ratio to be uniquely defined.

When the calculations are done the intrinsic parameters should be very accu-
rate. The rotation about the z-axis is ignored since it’s only valid in the panorama
setup.
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4.2 Online calibration

The offline calibration estimated the intrinsic parameters. When the cameras have
been placed around the football pitch the extrinsic parameters (location and ro-
tation) have to be estimated as well. The trivial solution would be to physically
measure these parameters. To do this with sufficient accuracy is impractical. Also,
when the system is in operation these parameters could change due to movement
in the camera rig (caused by the wind or other external force). The online calibra-
tion is performed in three steps. Step 1 is used to calculate a rough estimate of
the extrinsic parameters. Step 2 is used to improve the estimation of each camera
model. Step 3 is used to improve the relationship between the left and right camera
model.

4.2.1 Step 1

The online calibration starts with an operator selecting a few points in the left and
right image that have a known coordinate in the real world. These poins should be
placed where the image has an intrinsic dimensionality higher than one (all points
must not lie in a straight line), thus where lines intersect is a good place to select
points. This is done once during the startup of the system. The points selected is
shown in figure 4.3.

(a) (b)

Figure 4.3. (a) Football pitch from left camera view. (b) Football pitch from right
camera view.

The world coordinates are projected to the image plane, the distance between
the projected point and the selected points is minimized by adjusting the camera
parameters. The parameters can in this way be estimated.
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4.2.2 Step 2

A problem with step 1 is that the operator manually selects the points in the image.
It’s not possible to select these points with a better precision than ±1 pixels so an
error is introduced to the estimation. Step 2 is used to improve the calibration by
comparing the left and right image with a model of the pitch.

The model of the pitch is created from a plan-view image of the pitch. This
image is warped to the left and right image plane producing the images seen in
figure 4.4.

(a) (b)

Figure 4.4. (a) Model of football pitch transformed to left camera view. (b) Model of
football pitch transformed to right camera.

The lines in the pitch model can be compared with the lines in the original
image, thus calculating the error in the model. For each corner or line intersection
area correlation is used to calcualate how much difference there is between the
model and the real image. This difference is minimized by adjusting the camera
parameters using a multidimensional Newton-Rahpson search scheme.

4.2.3 Step 3

As a last adjustment on the camera models, step 3 is used to improve the joint
calibration by comparing the left and right image. The left and right image contains
many features that occur in both images (lines etc). By warping the rectified right
image to the original left image plane figure 4.5 is produced. As seen this procedure
creates an image quite similar to the left image. The difference between the two
images is that features that do not lie in the ground plane are shifted sideways
(note the goal).

By comparing features on the ground (with intrinsic dimensionallity higher than
one) it is possible to calculate the relative error in the models. Figure 4.6a shows
the absolute difference between the two figures in figure 4.5. If the two models were
perfect the features in the ground would be completeley grey, this is not the case
in figure 4.6a.
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(a) (b)

Figure 4.5. (a) Left camera view. (b) Rectefied right camera view warped to left.

Again using area correlation as in step 2 it is possible to adjust the left camera
parameters so that the error is minimized. Since only the left camera is adjusted
this procedure does not correct the absolute location and orientation of the camera.
But rather the relation between the two camera models. Figure 4.6b shows the
difference image after this calculation. The features in the ground are now much
less apperant.

(a) (b)

Figure 4.6. (a) Difference between left and the right projected image after the first
calibration step. (b) Difference after the second calibration step.



Chapter 5

Camera setup

If the system should cover the entire football pitch, several rigs (a rig consists of
two cameras) must be used.

5.1 The pitch

During the first stages of the thesis there where no real football images to work
on. Because of this a scale model of a football pitch was built. The scale of the
model is 1 : 35 and the dimensions have been chosen to comply with international
specifications ([3]).

Figure 5.1. A photo of the scale model.

29
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5.2 Possible setups

There is a huge number of possible ways to place the camera rigs, all depending
on how many rigs that are used, what focal length that are chosen and how much
overlap that is desirable.
There are numerous factors to take into the account when deciding these questions.
Below follows a few of these factors that I found most important.

1. How many cameras can be used?

2. Should the player be covered from more than one direction? (Should each
area of the pitch be covered by more than one stereo pair).

3. Which area should each camera rig cover?

4. Where (most important, how far away from the pitch) can the cameras be
placed?

5. What pixel resolution must a player have at a certain distance?

6. What range resolution must a player have?

Two examples of how four cameras can be placed to cover the football pitch is
shown in figure 5.2.

(a) (b)

Figure 5.2. Two possible camera setups with 8 cameras.
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5.2.1 Coverage (point 1-4)

Deciding on how many cameras that can be used is mainly an economical question.
The cameras themselves are not so expensive (between $400 − $1000). But all
the things around the cameras, cable’s, rigs etc. significantly increase the price.
Tests have shown that it’s very difficult to use less than 8 cameras, otherwise the
resolution would be very poor since the cameras have to be equipped with very
wide-angle lenses.
Covering the player from more than one direction would imply to double the amount
of cameras. If this is economically justified then this would be a great way to
increase the performance of the system. However, this question is somewhat out
of the scope for this thesis.

Figure 5.2 shows two ways of covering the pitch with 8 cameras.
Figure 5.2a places all the cameras on one side of the pitch and divides the pitch

into four pieces.
Figure 5.2b shows another way of cover the pitch, this time from two different

corners. When covering the pitch in this manner the players is covered from two
directions thus improving the estimation of the position in this area. This way
requires a wider FOV thus reducing the resolution in the middle of the pitch.

5.2.2 Placement (point 5)

The placement of the cameras is crucial to the choice of camera lens. If the cameras
is placed far away from the pitch (> 50m) a lens with large focal length can be
used. If the cameras must be a lot closer a lens with shorter focal length has to be
chosen. For this thesis it has been assumed that the cameras can be placed 30m
from the pitch, at a height if about 25m. This location was chosen after studying
larger arenas in Europe.
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5.2.3 Resolution (point 6-7)

By the resolution of the player, two things are referred to. First there is the actual
pixel resolution. This means how tall (in image pixels) a player is at a specific
distance. The second resolution measure is depth resolution. Depth resolution is a
measure of how well the distance between the object (the player) and the camera
can be estimated. This depends mostly on the camera base, focal length and the
distance from the camera.

Pixel resolution

Pixel resolution is the size of an object in the image (in pixels). The pixel resolution
for objects at various distances and sizes is shown in figure 5.4.

Figure 5.3. An objects height in the image in relation to the size in the real world.

The geometry of figure 5.3 gives the following basic relation.

H

Z
=

h

f
→ h =

fH

Z
(5.1)

The pixel resolution, here referred to as v, is then defined as below.

v =
fH

Z
·
sv

sy
=

fH

Z
·

sv

2f · tan(fovh/2)
=

Hsv

2Z · tan(fovh/2)
(5.2)

A plot of this resolution measure with respect to the distance from the camera
is shown in figure 5.4.
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Figure 5.4. The size of an object in pixels with respect to the distance from the camera.

Depth resolution

Depth resolution is a measure of how well the distance between an object in the
scene and the camera is estimated. The depth resolution is defined as the difference
in range when the stereo algorithm fails it’s search with ±0.5 pixels. This is the
best estimate that can be calculated without sub-pixel accuracy.

From the stereo geometry the following basic relation can be found.

x1 =
−fb

y1
(5.3)

x2 =
−fb

y2
(5.4)

Depth resolution is here defined as △x = x2−x1. The error made by the stereo
estimation is a positive shift of y1 and is defined as △y = sx

su

(a shift of one pixel).
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Figure 5.5. Two cameras in an epipolar configuration (stereo geometry).
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(5.5)

A plot of this resolution measure with respect to the distance from the camera
is shown in figure 5.6.
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Figure 5.6. Error with respect to distance from the camera.

5.3 Final setup

During my work with this thesis it has become clear that it isn’t possible to select
a “best” camera setup. It all depends more or less on the following questions.

• How large is the arena? Larger arena means more cameras or wider lenses.

• How many cameras can be afforded? With more cameras smaller lenses can
be used, which leads to better performance (although more processing power).

• What precision is desirable? Good precision implies using many cameras.

• What should the system be used for? 3-d reconstructions implies using cam-
eras all around the arena so that players can be covered from more than one
direction.

There are some advantages with placing all the cameras at the same location
(in the middle of the long side at the same side as the main broadcast camera).
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First there is the cost issue, long cables is very expensive and is inconvenient to
install. Second, if the system has an operator he/she would probably sit at this
locations since it has the best overview of the pitch, and it is convenient that the
operator sees the same view from the cameras as in real life.

As long as all the camera pairs are working independently, there is no problem
with adding and reducing the number of cameras used. Thus there should be
no problem leaving these questions unanswered until the system is about to be
installed at a specific arena.



Chapter 6

Detecting the players

6.1 Related work

In recent years several papers have appeard that deals with tracking players in
different sports. Many of these papers ([2] for example) uses template matching
to track the players from one frame to the next. This usually requires manual
initialization of the player position. Also these papers do not really concentrate
on the actual measurement of the players positions but rather the tracking of the
players.

6.2 Foreground extraction

The job of finding the players gets significantly easier if the system knows what
part of the image that is background (pitch, spectators and other static parts of
the arena) and what is foreground (the players and the ball). The simplest way to
determine this is to use a model of the background and then extract this model
from the image acquired each frame.

6.2.1 Background model

The background model is essentially an image built by Gaussian distributions. The
system is initialized by collecting N frames of an empty pitch which represent the
background, the mean and standard deviation of each pixel for these N frames is
calculated and this builds the first background model.

A problem with this background model is that it is only valid for a brief moment.
As soon as the lighting changes or something else happens in the background, this
model will become invalid. Thus, in order to have a valid background model it has
to be updated continuously. This is however not that hard of a task if the system
successfully can detect all players and the ball. Since the system then knows
where the players are, it is trivial to guess that the rest of the image depicts the

37
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(a) (b)

Figure 6.1. (a) Left background model. (b) Left input image.

(a) (b)

Figure 6.2. (a) Left extracted foreground. (b) Right extracted foreground.

background, and this can then be used to update the background model. Since the
players usually don’t stand still for more than a few seconds most of the background
will be updated successfully.
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6.2.2 Right to left model

A problem with the background model is that the shadows that the players cast are
not in the background model, this causes these shadows to appear in the foreground.
If tracking with one camera this is a big problem since it is hard to determine the
center of the players when there is a shadow near the player all the time that changes
direction with time. With stereo vision it is usually possible to see that the shadow
lies in the ground plane, this it does no harm. However in some conditions the
shadow can interfere with the disparity estimation, thus it is desirable to remove
the shadow from the foreground anyway. A way to get rid of these shadows is to
warp the right camera image to the left through the ground plane. This result in
an image very similar to the left image but with the difference that things that
are not in the ground plane will be tilted. Since the shadows are all in the ground
plane it is possible to see the difference between the players and their shadows.

(a) (b)

Figure 6.3. (a) Left input image. (b) Right input image transformed to left view.

(a) (b)

Figure 6.4. (a) Left extracted foreground. (b) Right extracted foreground.
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Combining these two techniques gives a quite good foreground extraction that
neither has any problem with shadows nor any problem with light changes.

Figure 6.5. Final foreground extractions for left and right image
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6.3 Disparity estimation

As mentioned earlier, the disparity estimation is performed on the rectified images.
The left and right rectified images of a scene are shown in figure 6.6.

(a) (b)

Figure 6.6. (a) Left rectified image. (b) Right rectified image.

The phase based stereo was chosen since it was the fastest method available
and seemed to give a quite good estimation of the disparity in the reference scenes.

Calculating disparity directly from the two images will not work very well as
seen in figure 6.8a. The reason for this is that the black borders are too dominant
in the images (and not equal in the left and right image). These black borders
affect the disparity image in a very unsatisfactory way. Another problem in these
images is that the lines in the pitch can affect the disparity estimation as well. As
shown with the bottom most player in figure 6.6a and 6.6b, in the left image the
head of the player is on one side of a line in the pitch, and in the right image it is
on the other side of that line. This can seriously affect the disparity estimation.
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To deal with these problems an edge image is calcualted from the rectified
images (sobel-x). This edge image is then masked with the mask created previously
(figure 6.5). The mask is rectified in the same way as the original images. The
resulting edge image is shown in figure 6.7.

(a) (b)

Figure 6.7. (a) Left edge image masked with left mask. (b) Right edge image masked
with right mask.

It’s clear that the resulting edge image only contains foreground objects. The
resulting stereo estimation is shown in figure 6.8b.
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Figure 6.8b shows the final disparity image. The difference between the two
disparity images is quite big. The procedure of creating an edge image and then
mask this really improves the result.

(a) (b)

Figure 6.8. (a) Disparity calculated from the rectified images. (b) Disparity calculated
from the edge images.
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Figure 6.9a shows the same image as figure 6.8 but now masked with the left
mask. This stereo calculation is performed both from left to right and from right
to left as seen in figure 6.9b. The reason for this is that the disparity estimation
assumes that there is no discontinuities in the images, but at the edge of the players
this is obviously the case. By calculating from left to right and from right to left
it is possible to detect where the discontinuities are, and remove them from the
disparity image.

(a) (b)

Figure 6.9. (a) Disparity calculated from left to right then masked with left mask. (b)
Disparity calculated from right to left then masked with right mask.
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6.4 Player localisation

The player’s position is extracted from the disparity image. A quite simple way
to do this is to project the information in the disparity image down to the ground
plane to what is here called a density map.

6.4.1 Density map

For each pixel in the disparity image (figure 6.11a) a real 3-d space coordinate is
estimated. This calculation is done according to figure 6.10.

Figure 6.10. Triangulation to retrive real 3-d position.

For each pixel in the left image its coordinate is calculated in 3-d space (p̄b)
assuming that the coordinate is located in the ground plane. Using the information
in the disparity image it is also possible to calculate the coordinates for the right
image (p̄d).

p̄b = ft2w(ū) (6.1)

p̄d = ft2w(ū + [d(ū) 0]T ) (6.2)

ft2w transformation function from transformed image coordinates to plane coordinates.
ū 2-d image coordinate.
d(ū) disparity value at coordinate ū.

By defining the left and right camera coordinate as p̄a and p̄c respectivelly, the
following two lines in 3-d space can be defined.

L1 : p̄a + µ1(p̄b − p̄a) (6.3)

L2 : p̄c + µ2(p̄d − p̄c) (6.4)
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Line 1 describes all the possible world coordinates for the image coordinate ū.
While line 2 describes the same but for the right camera coordinates. The world
coordinate is chosen at the midpoint of the shortest line between the two lines L1

and L2.

When all coordinates have been calculated, the 3-d space is divided into a evenly
distributed 3-d grid. Intergration along the z-axis produces the density map shown
in figure 6.11b.

(a) (b)

Figure 6.11. (a) Disparity image. (b) Resulting density map.

The displacement of one pixel in an image measured in meters on the ground
plane is different depending on where in the image the displacement is. This is
easily seen in the image since the players have different heights depending on how
far away they are from the camera. The effect is not as apparent sideways. Since
all the players should form spots of the same size, this effect has to be accounted
for.

The figure below shows the area on the ground k that is covered by one pixel
in the camera view.

The area k is described by equation 6.5. It is assumed that the area is constant
sideways but changing with the distance from the camera.
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Figure 6.12. Estimation of area behind one pixel in the camera image.
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H

tan(β + π
2 − α)

−
H

tan(π
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(6.5)

α = atan(
H − h

d
) (6.6)

β =
fovh

sv
(6.7)

k size of the voxel.
d the horizontal distance between the voxel and the camera.
h the height of the voxel.
H the height of the camera.

When transfering a pixel from the disparity map to the density map each pixel
is thus scaled by a factor of 1/k.

6.4.2 Position extraction

The task of locating the players is now a task of finding the spots in the density
map that are large enough to represent a player. Also, if a spot is too large, one
might assume that there are two or more players standing very close to each other.

Finding the player among these spots can be done in several ways, for example
using some sort of hill-climbing or mean-shift analysis. However, a very simple tool
can also be applied, a max-filter (a filter that takes the maximum value in a NxN
region).

A max-filter with size 5x5 is used. This size has been chosen since it is about
the expected size of a human standing upright in this plane. The density image is
first lowpass filtered, to lower the sensitivity to singular points (which usually are
not correct anyway). The values in the density map are an indication of how much
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of a player occupies that particular space. If this value is small one can conclude
that it is probably noise that isn’t interesting. So all values under a specific limit
are removed, this threshold has been chosen empirically and depends on what
resolution the players have in the images. The resulting image is then subjected
to the max-filter. Extreme points (maxima) should occur where the output of the
max-filter and the lowpass-filter are equal. The size of the lowpass kernel has also
been chosen empirically and is in this case a standard [1 2 1] ⋆ [1 2 1]T kernel.
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When a person isn’t standing upright, this method may result in several maxima
within one person. Since the players are tracked trough several frames there should
be no problem to remove the false maxima since one can assume that the players
moves quite slow (when 25fps is used anyway). And it’s known that new players
can’t just appear out of the blue, so if maxima like this occur, it is possible to
conclude that they are false.

(a) (b) (c)

Figure 6.13. (a) Low-pass filtered density map. (b) Max-filtered density map. (c)
Extracted extreme points (position image).

6.4.3 Position evaluation

The stereo estimation results in two different disparity images, one with the left
image as reference and one with the right image as reference. Because of this the
procedure described earlier with density map and position extraction is performed
on both disparity images. The result is shown in figure 6.14.

As seen in the figure 6.14, they are almost identical, however not exactly. Two
player indications are shown in the right image surrounded by circles. These are
not present in the left image. By comparing these two results it’s possible to
eliminate false players, i.e. points that have no match in both images. We try to
match the points in both images in a least-square fashion, that is, the difference in
positions between the points in the left image to it’s companion in the right image
is minimized. Points that have no match are eliminated.
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(a) (b) (c)

Figure 6.14. (a) Position image from left-to-right disparity image. (b) Position image
from right-to-left disparity image. (c) Resulting position image (equal to the first image
in this case).

6.5 Player segmentation

After the player’s positions has been established in the plan-view image it’s de-
sireable to establish what area that the player occupy in the original image. The
first step to do this is to label the position image that was created in the position
evaluation step, the result is shown in figure 6.15a. The labeling procedure tags
each isolated segment in the position image with a unique number (color). The
resulting labeled image is then expanded so that every position occupies a quite
large area. The size of this area has been chosen to be the largest area a human
can occupy in this view, the result from this operation is shown in figure 6.15b.
Two regions that are very close do not grow over each other but stops when they
meet, as seen in the figure.

The target for the player segmentation step is to project this labeled information
to the mask created in an earlier chapter. This is done by projecting the left and
right mask using one of the disparity images as done in the density map procedure.
The mask itself isn’t projected but rather it’s coordinates, from the projected
coordinate the color from the expanded position image can be extracted. The
result is shown in figure 6.16.
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(a) (b)

Figure 6.15. (a) Labeled position image. (b) Expanded position image.

(a) (b)

Figure 6.16. (a) Left mask, labeled. (b) Right mask, labeled.
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6.6 Player position refinement

The first position extraction is quite rough. The position is estimated with the
same resolution as the plan-view map and thus there is room for improvementes.
There are two main reasons to why the first stereo estimation isn’t good enough.
First there is a resolution problem, the image of the transformed image plane is
360x576 pixels. The entire pitch that is covered is squeezed into this image, thus
the players become wery thin in this view. The stereo estimation uses a quite
large quadrature filter (11x1), this means that the estimation can never be very
accurate since the player’s are so thin, thus there are no details in the players.
One could of course increase the image size to improve this but the computatonal
overhead would make this undesirable. The second reason is that the disparities
of the players are still quite large (even though the ground plane is used for the
transformation). The stereo algorithm works at it’s best when the disparities are
small.

A solution for this is to select a new image plane and do the stereo estimation
again. One smaller plane is chosen for each player, this plane is located at the
roughly estimated position of the player and has been rotated 90◦ around the y-
axis. An example of this is shown in figure 6.18a. When transforming the left
and right view to this plane, everything that lies behind the plane is shifted to the
left, and everything in front of the plane is shifted to the right. The transformed
images are shown in figure 6.17a - 6.17f (all players are not listed here). The high
resolution and small disparity of this image pair gives a good position estimation.
Since the mask is segmented it is easy to only include the pixels in the disparity
image that belongs to each player in the position calculation.
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The stereo is estimated in the same way as before, i.e by calculating an edge
image from the transformed images and then mask the images with the foreground
mask (figure 6.17g and 6.17h). The stereo estimation (figure 6.17k) is then masked
with the labeled image created earlier (figure 6.17i and 6.17j). As before the stereo
estimation is projected to a plane in the ground (figure 6.17l) and the new position
is estimated by calculating the center of mass in this image.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 6.17. (a)-(f) Zoomed images. (g)-(h) Zoomed edge images. (i)-(j) Zoomed
labeled mask images. (k) Stereo estimation. (l) Plan-view density map.
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Figure 6.18 shows a larger version of a zoomed player and the resulting disparity
estimate.

(a) (b)

Figure 6.18. A larger view of a zoomed player and his disparity estimate.

Using the disparity estimate and the texture from the zoomed player, a simple
3-d reconstruction can be viewed as shown in figure 6.19.

(a) (b)

Figure 6.19. Disparity image projected onto 3-d space.



Chapter 7

Detecting the ball

During the process of finding the players it became clear that it wasn’t easy to find
the ball in the same manner. Much of this was because of the way that the first
stereo estimation was performed. During that step the images are transformed to
a plane that lies in the football pitch, thus making the disparity only to move along
the x-axis. The disparity decreases with the height above this plane. A player has
a limited height above the plane, thus it has a limited disparity range. The ball
however can reach great heights and thus the disparity will be large as well. This
makes it hard for the disparity estimation to correctly estimate the ball position.

Because of these problems a separate process of locating the ball was developed.

7.1 Related work

Some papers ([6], [1]) propose a post processing algorithm to find the ball. The
algorithm tries to find ball like features and tracks these with a kalman filter. When
enough frames have been processed the ball is located by looking at the trajectory
of the tracked objects. Since the ball is a small rigid object with a behaviour
that could be anticipated this works quite well. However since the goal is do to the
calculations in real time, this is not really a solution. Other simpler solutions exists
as well, [2] uses a manual initialization of the location of the ball, i.e an operator
marks where the ball is each time the tracker has lost the ball. This solution could
be used since an operator is probably needed for a system like this. However an
automatic way of locating the ball would be desirable.

7.2 Ball candidates

The process of locating the ball starts with locating all the parts of the image that
can be a ball, that is locating all the ball candidates. This is done with a filter
that takes the maximum value of a NxN region and substract the maximum of a
(N+1)x(N+1) region (just the border). This filter gives high values as response
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to small white objects on a dark background. This produces a list of 2-d ball
candidates in the left and right image. The ball candidates are located in the
images using the left and right mask. A ball is supposed to be a small round object
in the mask, thus we extract all objects in the masks that fits this description.

For all the candidates in the left view a 3-d line is calculated. The line emanates
from the left camera and passing through the candidate in the image plane. The
real position of the candidate is somewhere along this line. For every candidate in
the right view the same calculations is performed.

Every line in the left view is then compared with every line in the right view,
if they intersect (or closely intersect) it can be a match, thus their intersect point
(or closest point if intersection) is considered to be a 3-d ball candidate. When
all the lines has been compared, a list of new ball candidates with 3-d coordinates
has formed. These coordinates are projected to the left camera view and using a
correlation algorithm with a ball model an estimate of how “ball-like” the candidate
is, is created.



Chapter 8

Tracking

8.1 Tracking the players

A very simple tracking algorithm has been implemented for the players as described
below. This can of course be done in a much more elaborate way, using some sort
of filter (kalman etc.). But this is beyond the scope of this thesis.

8.1.1 Initialization procedure

For the first frame it’s assumed that all the players are standing upright (so that
they are not producing any false positions) and that they are not too heavily
occluded. The players velocity and accelerations is initialized to zero.

8.1.2 Tracking procedure

In consequtive frames the localization procedure is perform again, and then the
data is compared with the data that has been stored from previous frames. From
previous frames there also exist a list of players, with position, velocity and acceler-
ation stored. During the player localization step a new list is created that contains
all the players found in the current frame, these only have a position. For all the
saved players an estimated position is calculated (based on old data). This position
is our estimate on where the player should be in the current frame. This position
is compared with the new position information. In the same manner as with the
position evaluation, the saved players position is matched with the new position
data in a least-square fashion, where the total matching score is minimized. The
matching score is calculated based on the difference between the estimated position
and the new position, and the difference between the old velocity vector and the
velocity vector required to get to the specific position. If a saved player can’t find a
match among the new positions, it is considered to be occluded. If a new position
can’t find a match among the saved players it is considered to be a false position
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unless it is on the edge of the image. It is then considered to be a new player,
entering the scene.

8.2 Tracking the ball

As with the tracking of the player, the tracking algorithm used for tracking the
ball is very simple as described below. This can be done in a much more elaborate
way, using some sort of filter (kalman etc.). But this is beyond the scope of this
thesis.

8.2.1 Initialization procedure

For the first frame the ball candidate that has the best score is selected, i.e. the
candidate that is most “ball-like”. The velocity and acceleration for the ball is
initialized to zero.

8.2.2 Tracking procedure

In concurrent frames all the ball candidates are compared with the current ball.
One would expect that the ball hasn’t changed its speed, acceleration and position
too much from the previous frame. A new “ball-like” score estimate is created,
based on the score for each candidate and the difference in speed. Also the distance
between the estimated position of the ball and the position of the candidate is taken
into account, this distance should in normal cases be quite small. When a candidate
with the lowest total score has been found it is considered to be the ball, the ball
model is then updated (position, speed and acceleration) with the information from
the candidate. If the total lowest score is higher than a certain limit, it’s concluded
that a ball couldn’t be found in the current frame (it is probably occluded), when
this happens the balls position is updated with saved information (acceleration and
speed), thus the current position is estimated.



Part IV

Evaluation
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Chapter 9

Evaluation

Looking at the overall performance of this system it is clear that the players are
successfully found if they are not too heavily occluded.

The result of the system developed looks very promising. The system has been
tested on three reference scenes. The two first scenes is real live scenes that include
two players and a football. The third is a static model of a pitch that was chosen
since it allowed for a controlled environment.

9.1 Reliability

The reliability of the system seems to be quite good. The players are located using
the plan-view density map, since players seldom occludes each other from above
it is quite easy to distinguish different players through this view. Problems occur
when two players are too close to each other, those situations have been resolved
using tracking over several frames.

The first two reference scenes were used to define the reliability of the imple-
mentation. The reliability is defined as a percentage of the frames in the scene that
the implemention was unable to find the player.

9.1.1 Scene 1 (real)

One frame for the first test scene is shown in figure 9.1. The scene consists of two
players and one ball. The players are running towards the goal and one of the
players shoots the ball into the goal.

Table 9.1 shows the reliability value when detecting the players and the ball.
As seen in the table the reliability value for the ball is much higher than for the
players. This is natural since the ball is occluded by the players much more often
than the players themselfs.
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Figure 9.1. First test scene (149 frames).

# frame # not found # found reliability

player 1 149 0 149 100%
player 2 149 7 142 95%
ball 149 54 95 64%

Table 9.1. Detection result for scene 1.

It should be clearly noted that even if a player or the ball isn’t found in one
frame, he is still tracked correctly in most cases since the new position is predicted
using saved data (old position and velocity).
Figure 9.2 shows the tracked paths for scene 1.
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Figure 9.2. First test scene.

9.1.2 Scene 2 (real)

One frame for the second test scene is shown in figure 9.3. This scene also consists
of two players and one ball. The players starts by running away from each other.
The players then turn and run toward each other and smash together at the end
of the scene.

Table 9.2 shows the reliability value when detecting the players and the ball. As
with scene 1 the the reliability value is much higher with the ball. The reliability
values for the players are also higher in this this scene than in scene 1. One reason
for this is that the players run into each other, therefore only one player is seen in
those frames.

# frame # not found # found reliability

player 1 269 49 220 82%
player 2 269 18 251 93%
ball 269 64 205 76%

Table 9.2. Detection result for scene 2.
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Figure 9.3. Second test scene (269 frames).

Figure 9.4 shows the tracked paths for scene 2. Note that there is a discontinuity
in the path for player 1 at the point where the two players meet. This is not correct
but rather a consequence of player 1 being occluded by player 2, thus his position
has to be predicted. When player 1 is visible again the tracker recognizes this
and the tracking is correct again. By estimating the velocity and acceleration in a
better way, this fault in estimation would not be so apparent.
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Figure 9.4. Second test scene.

9.2 Precision

One of the more important aspects of the system is to know how well a players
position is estimated. For now the position is estimated directly from the disparity
image. The disparity image is projected to the ground and creates a pile of voxels
who’s centre of mass describes the position of the player. This means that the
position estimated is measured on the side of the player that is facing the camera,
thus not really the centre of the player as one might expect. Depending on what
application the system is to be used for this might or might not be adequate.

The third reference scene was to be used as an indication how how well the
position was estimated.
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9.2.1 Scene 3 (model)

A simple test was carried out to give an illustration as to how well the position
is estimated. A player (in the pitch model) walks along a known path and the
resulting measurements are shown in figure 9.6. The scene was animated by hand
and the player was rotated to simulate the movement of a real player while still
holding the center of the player along the line.

Figure 9.5. Third test scene (15 frames).

As seen in figure 9.6, the positions seems to be estimated with a small offset
from the ideal route (along the straight line). This offset is the cause of an error
in the camera calibration, since this can be adjusted with a little more work this is
ignored. According to the graph, the maximal estimated error is somewhere in the
region of ±0.2m with a standard deviation of 0.142m. However it should be noted
that the scenario where this measurements was taken does not include occlusion
or other harder situations.

It is important to note that this measurement is only valid in this resolution
and at this particular distance from the camera.
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Figure 9.6. Path for the marked player.

9.3 Camera placement

As mentioned earlier there are no real limit on how many cameras that can be
used. More cameras will improve the overall performance of the system but will
also make the price higher as well as demanding more computational power.
It is unlikely that the system can work properly with less than 8 cameras since
the resolution of the input images the would be too low. The system was designed
with 8 cameras in mind, but no changes are necessary if more are used.

9.4 Computational power

Development of the system was performed on a Pentium 3, 2x700Mhz running
Slackware Linux. The total time used to calculate one frame is about 2s (when
using one thread). With opimizations and newer hardware (Pentium 4, 3.8Ghz)
it has been possible to reduce this time to about 30ms (for at most 25 tracked
players), thus ensuring the calculations to run in real-time (25 times per second
with PAL cameras).
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Chapter 10

Summary

10.1 Conclusion

The goal of the thesis was to investigate if it was possible to implement a system
used to find and track the players on a football pitch. This thesis has shown that
this is indeed possible with an aceptable precision and reliability in the reference
scenes. To be able to show that this will acually work in a larger scale during a
real football game would require much more work. However I think that this thesis
has shown that stereo vision has huge potential and it is very possible that this
technique can be used in a real tracking system.

In the beginning of this thesis the following goal was defined:

1. Find a working camera setup that can cover the entire pitch.

2. Locate and track the players in the reference scenes.

3. Locate and track the ball in the refrence scenes.

Below is a short summary on how these goals was reached.

1. Two possible camera setups was defined. As described these are not the only
two possible setups but rather a suggestion.

2. The players are located and tracked by extracting information from the dis-
parity between two rectified camera views. The disparity information is pro-
jected to a ground plane thus creating collections of white pixels where the
players are located. This image is segmented and each player is assigned a
segment of pixels. The position of each player is calculated as a weighted
position of the segment.

3. The ball is located and tracked in the images. The ball is first located with
a simple filter that extracts all small white dots in the image. The correct
ball is then selected based on the foreground mask (the ball is supposed to
be small and round in the mask as well).

69



70 Summary

10.2 Future work

In order to have a complete system for tracking the players much work is still to be
done. The tracking of the players can be done in a more elaborate way, for example
with a correlation-based search from one frame to the next. Also much more tests
have to be performed with real football images with many players on the pitch.

The position measurement can probably be significantly improved, this is es-
pecially true for the ball. The biggest problem with the estimation as it is done
now, is that there is no real control as to where on the player the position is esti-
mated. The position is estimated where the players have their largest bodymass.
This position is probably not the same for a player that is standing upright and a
player that lies down on the ground. When the players is “zoomed” (during the
position refinement step) and stereo has been calculated for the second time we
have a lot of good measurements on the player. If the program can make use of
these measurements in a better way and from these measurements locate the chest
for example, the precision would improve a lot.

Since the ball is a small rigid body it should be possible to quite accurately
calculate the ball trajectory when it is occluded. As said earlier, the location of
the ball could be estimated with a much better precision if it was subjected to a
stereo estimation after the first location has been extracted.
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