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A theoretical model is presented that relates the ball-bat coefficient of restitution e to the 
ball coefficient of restitution e0 and dynamic stiffness k.  The model is used to develop a 
technique to normalize e to values of e0 and k for a “standard ball.”  The efficacy of this 
normalization technique is demonstrated by comparison with experimental data.  It is 
shown to be vastly superior to a widely used technique that is based on the physically 
unjustified assumption that the ratio e/e0, commonly referred to as the Bat Performance 
Factor or BPF, is independent of both e0 and k.   

1 Introduction 

In recent years, an effort has been under way to measure and regulate the performance of 
nonwood baseball and softball bats.   The measurement technique involves projecting a 
ball from a high-speed cannon onto a stationary bat and measuring the speed of the ball 
both before and after the collision.  From these measurements, a value can be derived for 
the ball-bat coefficient of restitution (COR) e, which is a measure of energy dissipation in 
the ball-bat system.   If e is to be a meaningful metric of bat performance, it is necessary 
to control the properties of the balls used to measure it.   One such ball property is e0, the 
COR of the ball when colliding with a rigid object, which determines the fraction of 
compressional energy stored in the ball that is returned as kinetic energy.  A second ball 
property is k, the effective spring constant or “dynamic stiffness” of the ball.  For a given 
bat, the ball stiffness controls how the initial energy is partitioned between compressional 
energy stored in the ball and that stored in the bat.  The larger the ball stiffness, the less 
compressional energy is stored in the ball, leading to less overall energy dissipation and 
larger e.  This phenomenon is popularly known as the “trampoline effect.”   
  Based on these general ideas, a highly-simplified theoretical model is constructed 
that describes the dependence of e on e0 and k.  This model is used to develop a technique 
to normalize e to values of e0S and kS for a “standard ball.”  The normalization technique 
is tested by applying it to experimental data taken at the bat testing facility at the Sports 
Sciences Laboratory at Washington State University.  While not perfect, the technique is 
shown to be vastly superior to another widely used technique.  
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2 Theoretical Consideratons 

2.1. Toy Model for the Ball-Bat Collision 

The starting point is a two-spring model for the ball-bat collision, Fig. 1, which was 
previously developed by Cross as a model for the trampoline effect in the interaction of 
tennis balls with the racket strings (Cross, 2000).   In this model, the ball and bat are each 
represented as masses on linear lossy springs, with force constants k0 and k1, respectively. 
We hereafter refer to k0 as the “dynamic stiffness" of the ball. The two springs mutually 
compress each other, converting the initial center-of-mass (CM) kinetic energy entirely 
into compressional potential energy.   

 

Figure 1.  Simplified physical model for the ball-bat collision. 

 
The fundamental equation for the energy dissipated in the collision is as follows: 

 1-e2 = (1-e0
2)f0 + (1-e1

2)f1 , (1) 

where f0 and f1 are the fraction of the initial CM energy stored in the ball and bat, 
respectively; the quantities (1-e0

2) and (1-e1
2) are the fraction of stored energy 

that is dissipated in the ball or bat; and (1-e2) is the fraction of total CM energy 
that is dissipated in the collision.  For linear springs, f0=k1/(k1+k0) and 
f1=k0/(k1+k0).  Defining r≡k1/k0, which is the ratio of energy stored in the ball to 
that stored in the bat, Eq. 1 can be rearranged to obtain: 
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Assuming no losses in the bat (i.e., e1=1), a reasonable assumption for impacts near the 
sweet spot of the bat, then Eq. 2 can be rewritten to obtain Cross’s result (Cross, 2000): 
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Eq. 3 is the basis for our normalization procedure. 
A plot of e vs. r is shown in Fig. 2(a) for several different values of e0.  The limiting 

cases have simple physical interpretations.  For r>>1, essentially all the CM energy is 
stored in the ball, none in the bat, and e approaches e0, the value for the ball alone, 
essentially independent of r.  This regime is typical of wood bats and low-performing 
hollow bats.  In the opposite limit, r<<1, very little energy is stored in the ball, so that e 
approaches 1 (or e1) independent of e0.  In the intermediate range, e is generally larger 
than e0, as some of the energy that might have been stored and mostly dissipated in the 
ball is instead stored in the bat.  For modern hollow metal or composite bats, r is 
generally in the range 2-15, a range in which e depends on the two ball properties, e0 and 
k.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  (a) Plot of e vs. r (Eq. 3) for three values of e0.   (b) Plot of the ratio e/e0, commonly 
called the BPF, vs. r for three values of e0, demonstrating that the BPF is not independent of either 
ball COR or dynamic stiffness.  For the non-wood bat studied experimentally, 2.2≤r≤4.3. 

2.2 Normalizing to a Standard Ball 

Suppose a ball of known COR e0 and dynamic stiffness k is used to measure the ball-bat 
COR for a particular bat, obtaining e.  Given that information, a technique is sought to 
predict the ball-bat COR eS when the same bat is tested with a “standard” or normalizing 
ball S with COR e0S and dynamic stiffness kS.  In the context of the two-spring model, an 
exact procedure can be obtained via Eq. 3.  After some algebraic manipulation, our 
proposed normalization prescription is obtained: 
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  A different normalization procedure (Brandt, 1997) is widely used and is based on 
the assumption that the ratio e/e0, commonly known as the Bat Performance Factor or 
BPF, is a property of the bat alone and independent of both e0 and k.  The BPF 
normalization is given by the formula 
    

0
0

 BPF:         S S

e
e e

e
=  .                                                 (5) 

 
However, the BPF assumption is not in general consistent with the two-spring model. 
Indeed, a careful inspection of Eq. 4 or Fig. 2(b) shows that that e/e0 is independent of e0 
and k only in the limit r>>1, i.e., only for wood or low-performing hollow bats. 

3  Experiment and Results  

The bat and ball testing facility at the Sports Science Laboratory at Washington State 
University (Smith & Cruz, 2008; Smith, 2008) was used to study the dependence of e on 
the ball properties e0 and k, with the specific goal of testing the normalization procedure 
of Eq. 4.  The measurements consisted of firing a softball from an air cannon at 110±1 
mph onto a stationary bat and measuring the incoming and rebound speed of the ball, 
from which the ball-bat COR is derived using standard formulas (Nathan, 2003).  The 
measurements utilized 78 different standard softballs, whose COR and dynamic stiffness 
were determined in supplemental experiments (ASTM WK8910) and ranged from 0.31-
0.39 and 5100-10,000 lb/inch, respectively.   The balls were divided into groups of six, 
with balls in each group having nearly the same value of e0 and k. The primary bat studied 
was a high-performing non-wood bat (Louisville Slugger Catalyst, 34 inches long, 26.5 
oz).  As we will discuss shortly, the r values for this bat and the balls used were in the 
range 2.2-4.3.  From Fig. 2, we see that in this regime the ball-bat COR is a much 
stronger function of k than of e0, whereas the BPF is a strong function of both k and e0. 
This bat should therefore be particularly useful in distinguishing between the two 
normalization techniques.  The impact location was fixed at 6.5 inches from the barrel tip.  
Additional data were taken on a wood bat (Brett Brothers Pro-Model 110, 33 inches long, 
29 oz), for which the ball-bat COR is expected to be independent of k.  After normalizing 
the wood bat COR to e0 using Eq. 5, we confirm our expectations by finding the COR to 
be   independent of k.  The root-mean-square (rms) scatter of the normalized values 
about the mean is 0.005, which we take as an indication of the overall precision of our 
COR measurements. 
  The results of our study for the non-wood bat are presented in Fig. 3, where the 
plotted values are averages over the six balls in each group.  Fig. 3(a) shows the 
dependence of e and eS on k for balls with 0.36<e0<0.37, where eS is calculated using Eq. 
4, with normalizing values  e0S=0.36 and kS=6700 lb/inch.  The results show that e has a 
nearly linear dependence on k with a slope of 0.027 per 1000 lb/in.  The slope is 
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considerably reduced to 0.009 per 1000 lb/in by normalization, an improvement by a 
factor of three.  Ideally the normalized slope would be zero, so there is some additional 
dependence of e on k that is not accounted for by the two-spring model.   Fig. 3(b) shows 
the dependence on e0 for balls with 6500<k<7000 lb/in.    The two-spring normalization 
removes essentially all the dependence on e0, reducing the slope of a linear fit by a factor 
of five.  On the other hand, Eq. 5 overcorrects for e0, resulting in a slope larger in 
magnitude and opposite in sign compared to the uncorrected data.  The scatter plot in Fig. 
3(c) of all the data shows that the large spread in unnormalized values of e is reduced 
considerably when the prescription of Eq. 4 is used to normalize.   By comparison, the 
BPF normalization technique, Eq. 5, shows a spread comparable to the unnormalized 
values.  Using Eq. 3, we estimate that the bat stiffness is approximately 22,000 lb/inch, so 
that r falls in the range 2.2-4.3.  That the BPF technique works so poorly can be easily 
understood from Fig. 2(b), given the range of r.   Indeed, the experimental BPF values are 
far from constant, ranging from 1.45-1.77 and 1.51-1.68 for the data in Fig. 3(a) and 3(b), 
respectively. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
Figure 3.  Results for the ball-bat COR e, with 
unnormalized values in blue and normalized 
values using Eq. 4 or 5 in red and black, 
respectively.  The dotted lines are linear fits to 
the data.  (a) e vs. k for approximately constant 
e0; (b) e vs. e0, for approximately constant k; (c) 
Scatter plot of all the data, where the horizontal 
line is the mean value for each and the box 
contains all but the upper and lower 5% of the 
points.  Closely spaced points have been 
displaced horizontally for clarity. 
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4  A Useful Approximation 

For low-performance bats, i.e., those with e not much larger than e0, a useful 
approximation to Eq. 4 can be derived, taking advantage of the fact that r>>1, so that e 
should be nearly independent of k: 
 
                                                   0 0S Se e e e≈ + −                                                 (6) 

 
To demonstrate the effectiveness of the approximation, consider a bat with e=0.54 when 
measured with a ball of e0=0.52.  We normalize to a ball of the same k and e0S=0.50, 
obtaining 0.5213 and 0.5200 using Eqs. 4 and 6, respectively, a difference of only 0.25%.   

5  Summary  

We have presented a model of the ball-bat collision that explicitly demonstrates the 
dependence of the ball-bat COR e on the COR e0 and dynamic stiffness k of the ball.  We 
have used this model to develop a technique for normalizing e to properties of a standard 
ball.  We have tested the model with a high-performance softball bat for which there is a 
strong nearly linear dependence of e on k and have shown that the normalization 
technique, while not perfect, reduces that dependence by about a factor of three.   We 
have further shown that the dependence of e on e0 is removed by the normalization. We 
have shown experimentally that the ratio e/e0, known as the BPF, depends on both e0 and 
k, as predicted by the two-spring model.  Therefore it is not surprising that the BPF 
normalization method fails for the non-wood bat tested.  Finally we have derived an 
approximate normalization expression which is valid for low-performing bats. 
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