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A ball can be hit faster if it is projected without spin, but it can be hit farther if it is projected with
backspin. Measurements of the tradeoff between the speed and spin for a baseball impacting a
baseball bat are presented. The results are inconsistent with a collision model in which the ball rolls
off the bat and instead imply tangential compliance in the ball, the bat, or both. If the results are
extrapolated to the higher speeds that are typical of the game of baseball, they suggest that a
curveball can be hit with greater backspin than a fastball, but by an amount that is less than would
be the case in the absence of tangential compliance. © 2006 American Association of Physics Teachers.
�DOI: 10.1119/1.2209246�
I. INTRODUCTION

Particle scattering experiments have been conducted for
many years to probe the structure of the atom, the atomic
nucleus, and nucleons. In comparison, very few scattering
experiments have been conducted with macroscopic objects.
In this paper we describe an experiment on the scattering of
a baseball by a baseball bat to determine how the speed and
spin of the outgoing ball depends on the scattering angle. In
principle, the results could be used to determine an appropri-
ate force law for the interaction, but we focus attention on
directly observable parameters. The main purpose of the ex-
periment was to determine the amount of backspin that can
be imparted to a baseball by striking it at a point below the
center of the ball. The results are preliminary in that they
were obtained at lower ball speeds than those encountered in
the field. As such, the experiment can easily be demonstrated
in the classroom or repeated in an undergraduate laboratory.

A golf ball is normally lofted with backspin so that the
aerodynamic lift force will carry the ball as far as possible.
For the same reason, a baseball will also travel farther if it is
struck with backspin. It also travels farther if it is launched at
a higher speed. In general there is a tradeoff between the spin
and speed that can be imparted to a ball, which is affected in
baseball by the spin and speed of the pitched ball. Sawicki,
Hubbard, and Stronge1 concluded that a curveball can be
batted further than a fastball despite the higher incoming and
outgoing speed of the fastball. The explanation is that a cur-
veball is incident with topspin and hence the ball is already
spinning in the correct direction to exit with backspin. A
fastball is incident with backspin so the spin direction needs
to be reversed to exit with backspin. As a result, the magni-
tude of the backspin imparted to a curveball is larger than
that imparted to a fastball for a given bat speed and impact
point on the bat, even allowing for the lower incident speed
of a curveball. The larger backspin on a hit curveball more
than compensates for the smaller hit ball speed and a curve-
ball travels farther than a fastball, a conclusion that has been
challenged.2

In Ref. 1 it was assumed that a batted ball of radius r will
roll off the bat with a spin � given by r�=vx, where vx is the
tangential velocity of the ball as it exits the bat. However,
several recent experiments3–7 have shown that balls do not
roll when they bounce. Rather, a ball incident obliquely on a

surface will grip during the bounce and usually bounces with
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r��vx if the angle of incidence is within about 45° to the
normal. The actual spin depends on the tangential compli-
ance or elasticity of the colliding surfaces and is not easy to
calculate accurately. For that reason we present measure-
ments of the speed, spin, and rebound angle of a baseball
impacting with a baseball bat. The implications for batted
ball speed and spin are also described.

II. EXPERIMENTAL PROCEDURES

A baseball was dropped vertically onto a stationary, hand-
held baseball bat to determine the rebound speed and spin as
functions of the scattering angle and the magnitude and di-
rection of spin of the incident ball. The impact distance from
the longitudinal axis of the bat was varied randomly in order
to observe scattering at angles up to about 120° away from
the vertical. Measurements were made by filming each
bounce with a video camera operating at 100 frames/s, al-
though satisfactory results were also obtained at
25 frames/s. The bat was a modified Louisville Slugger
model R161 wooden bat of length 84 cm �33 in. � with a
barrel diameter of 6.67 cm �2 5

8 in. � and mass M =0.989 kg
�35 oz�. The center of mass of the bat was located 26.5 cm
from the barrel end of the bat. The moments of inertia about
axes through the center of mass and perpendicular and par-
allel, respectively, to the longitudinal axis of the bat were
0.0460 and 4.39�10−4 kg m2. The ball was a Wilson A1010,
with a mass 0.145 kg and diameter 7.2 cm.

The bat was held in a horizontal position by one hand and
the ball was dropped from a height of about 0.8 m using the
other hand. A plumb bob was used to establish a true vertical
in the video image and to help align both the bat and the ball.
The ball was dropped with or without spin. To spin the ball,
a strip of felt was wrapped around a circumference and the
ball was allowed to fall vertically while holding the top end
of the felt strip. A line drawn around a circumference was
used to determine the ball orientation in each frame in order
to measure its spin. The impact distance along the axis was
determined by eye against marks on the barrel to within
�5 mm. If the ball landed 140–160 mm from the barrel end
of the bat, the bounce was accepted. Bounces outside this
range were not analyzed.

The velocity of the ball immediately before and after im-

pact was determined to within 2% by extrapolating data from
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at least three video frames before and after each impact. The
horizontal velocity was obtained from linear fits to the hori-
zontal coordinates of the ball and the vertical velocity was
obtained from quadratic fits assuming a vertical acceleration
of 9.8 m/s2. Additional measurements were made by bounc-
ing the ball on a hard wood floor to determine the normal
and tangential coefficients of restitution, the latter defined in
Eq. �1�, and a lower limit on the coefficient of sliding friction
�k between the ball and the floor. The coefficient of restitu-
tion values were determined by dropping the ball with and
without spin from a height of about 1.5 m to impact the floor
at a speed of 5.6±0.3 m/s. The incident ball spin was either
0, −72±2, or +68±3 rad/s. The normal coefficient of resti-
tution ey =0.59±0.01, and the tangential coefficient of resti-
tution ex=0.17±0.03, corresponding to a rebound spin �2
�0.16 �1, where �1 is the incident spin. If a spinning base-
ball is dropped vertically onto a hard floor, it would bounce
with �2=0.29�1 if ex=0 �as assumed in Ref. 1�. The lower
limit on �k was determined by throwing the ball obliquely
onto the floor at angles of incidence between 25° and 44° to
the horizontal, at speeds from 3.5 to 4.2 m/s and with neg-
ligible spin. The value of �k was found from the data at low
angles of incidence to be larger than 0.31±0.02. At angles of
incidence between 30° and 44° the ball did not slide through-
out the bounce, but gripped the floor during the bounce with
ex=0.14±0.02.

III. BOUNCE MODELS

Consider the situation shown in Fig. 1 where a ball of
radius r falls vertically onto a bat of radius R. In a low speed
collision the bat and the ball will remain approximately cir-
cular in cross section. If the impact parameter is E, then the
line joining the bat and ball centers is inclined at an angle �
to the horizontal where cos �=E / �r+R�. The ball is incident
at an angle �1=90−� to the line joining the bat and ball
centers and rebounds at an angle �2. The ball is therefore
scattered at an angle �=�1+�2. During the collision, the ball
experiences a tangential force F and a normal force N. For
the low speed collisions investigated here, the ball-bat force
acts essentially at a point, so that the angular momentum of
the ball about that point is conserved. Low speed collisions
of tennis balls are consistent with angular momentum
conservation,4 but high-speed collisions of tennis balls are
known not to conserve angular momentum.5 A phenomeno-
logical way to account for nonconservation of angular mo-

Fig. 1. Bounce geometry for a baseball of radius r and mass m falling
vertically onto a bat of radius R and mass M with impact parameter E.
mentum is to assume that the normal force N does not act
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through the center of mass of the ball, but is displaced from
it by the distance D,4 as shown in Fig. 1 and discussed more
fully in the following.

The collision is essentially equivalent to one between a
ball and a plane surface inclined at angle �1 to the horizontal.
Suppose that the ball is incident with angular velocity �1 and
speed v1. Let vy1=v1 cos �1 denote the component of the
incident ball velocity normal to the surface and vx1
=v1 sin �1 denote the tangential component. The ball will
bounce with velocity vy2 in a direction normal to the surface,
with tangential velocity vx2 and angular velocity �2. If the
bat is initially at rest, it will recoil with velocity components
Vy and Vx perpendicular and parallel to the surface, respec-
tively, where the velocity components refer to the impact
point on the bat. The recoil velocity at the handle end or the
center of mass of the bat is different because the bat will
rotate about an axis near the end of the handle.

The bounce can be characterized in terms of three inde-
pendent parameters: the normal coefficient of restitution
�COR� ey = �vy2−Vy� /vy1; the tangential COR, ex, defined by

ex = −
vx2 − r�2 − �Vx − R��

vx1 − r�1
, �1�

where � is the angular velocity of the bat about the longitu-
dinal axis immediately after the collision; and the parameter
D. The two coefficients of restitution are defined in terms of
the normal and tangential velocities of the impact point on
the ball, relative to the bat, immediately after and immedi-
ately before the bounce.

The bounce can also be characterized in terms of apparent
coefficients of restitution, ignoring recoil and rotation of the
bat. That is, we can define the apparent normal COR eA
=vy2 /vy1 and the apparent tangential COR, eT, given by

eT = −
vx2 − r�2

vx1 − r�1
. �2�

There are three advantages of defining apparent COR values
in this manner. The first is that apparent COR values are
easier to measure because there is no need to measure the bat
speed and angular velocity before or after the collision �pro-
vided the bat speed is zero before the collision�. The second
advantage is that the batted ball speed can be calculated from
the measured apparent COR values for any given initial bat
speed simply by a change of reference frame. We discuss this
calculation in Appendix B. The third advantage is that the
algebraic solutions of the collision equations are consider-
ably simplified and therefore more easily interpreted. Appar-
ent and actual values of the COR are related by

eA =
ey − ry

1 + ry
�3�

and

eT =
ex − rx

1 + rx
+

5D

2r
� rx

1 + rx
�vy1�1 + eA�

vx1 − r�1
, �4�

where the recoil factors, ry and rx, are the ratios of effective
ball to bat masses for normal and tangential collisions, re-

8
spectively. An expression for ry was derived by Cross:
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ry = m� 1

M
+

b2

I0
� , �5�

and an expression for rx is derived in Appendix A:

rx =
2

7
m� 1

M
+

b2

I0
+

R2

Iz
� . �6�

In Eqs. �5� and �6� m is the ball mass, I0 and Iz are the
moments of inertia about an axis through the center of mass
and perpendicular and parallel, respectively, to the longitudi-
nal axis of the bat, and b is the distance parallel to the lon-
gitudinal axis between the impact point and the center of
mass. For the bat used in the experiments at an impact dis-
tance 15 cm from the barrel end of the bat, ry =0.188 and
rx=0.159, assuming the bat is free at both ends. The exit
parameters of the ball are independent of whether the handle
end is free or hand-held, as described previously in Ref. 9 or
10. Equation �4� will not be used except for some comments
in Sec. IV C and for comparison with Ref. 1 in which it was
assumed that ex=0 and D=0, implying eT=−0.14 for our bat.
As discussed more fully in Sec. IV A, we find better agree-
ment with our data with eT=0.

From the definition of the parameter D, the normal force
exerts a torque resulting in a change in angular momentum
of the ball about the contact point given by

�I�2 + mrvx2� − �I�1 + mrvx1�

= − D� Ndt = − mD�1 + eA�vy1, �7�

where I=�mr2 is the moment of inertia of the ball about its
center of mass. For a solid sphere, �=2/5, although Brody
has recently shown that ��0.378 for a baseball.11 Equations
�2� and �7� can be solved to show that

vx2

vx1
=

1 − �eT

1 + �
+

��1 + eT�
1 + �

� r�1

vx1
� −

D�1 + eA�
r�1 + ��

�vy1

vx1
� , �8�

and

�2

�1
=

� − eT

1 + �
+

�1 + eT�
�1 + ��

� vx1

r�1
� −

D�1 + eA�
r�1 + ��

� vy1

r�1
� . �9�

Equations �8� and �9�, together with the definition of eA, give
a complete description of the scattering process. For given
initial conditions there are three observables, vy2, vx2, and
�2, and three unknown parameters, eA, eT, and D, that can be
inferred from a measurement of the observables.

We have written Eqs. �8� and �9� for the general case of
D�0. However, as we will show in Sec. IV A, the present
data are consistent with D=0, implying conservation of the
ball’s angular momentum about the point of contact. The
normal bounce speed of the ball is determined by eA, and for
D�0 the spin and tangential bounce speed are determined
by eT and r�1 /vx1. Depending on the magnitude and sign of
the latter, vx2 and �2 can each be positive, zero, or negative.
Equations �8� and �9� are generalizations of equations de-
rived by Cross4 for the special case of the ball impacting a
massive surface and reduce to these equations when eA=ey

and eT=ex.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Determination of eT

We initially analyze the data using Eqs. �8� and �9� assum-
ing D=0 and postpone a discussion of angular momentum
conservation. Results obtained when the ball is incident on
the bat without initial spin are shown in Fig. 2. The ball
impacted the bat at speeds varying from 3.8 to 4.2 m/s, but
the results in Fig. 2 were scaled to an incident speed of
4.0 m/s by assuming that the rebound speed and spin are
both linearly proportional to the incident ball speed, as ex-
pected theoretically. An experimental value eA
=0.375±0.005 was determined from results at low �back�
scattering angles, and this value was used together with Eqs.

Fig. 2. Results for the ball incident with �1=0, along with theoretical curves
calculated with eT=0 and −0.14.
�8� and �9� to calculate the rebound speed, spin, and scatter-
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ing angle as functions of the impact parameter for various
assumed values of eT. The best fits to the experimental data
were found when eT=0, but reasonable fits could also be
obtained with eT=0±0.1.

Results obtained when the ball was incident with topspin
or backspin are shown in Fig. 3. These results are not ex-
pected to scale with either the incident speed or incident spin
and have not been normalized. Consequently the data show
slightly more scatter than those presented in Fig. 2. The ball
impacted the bat at speeds varying from 3.9 to 4.1 m/s and
with topspin varying from 75 to 83 rad/s or with backspin
varying from −72 to −78 rad/s. Simultaneous fits to all three
data sets resulted in eA=0.37±0.02 and eT=0±0.02. Using
the recoil factors ry =0.188 and rx=0.159, our values for eA

Fig. 3. Results for the ball incident with topspin or backspin, along with
theoretical curves calculated with eT=0 and −0.14.
and eT imply ey =0.63±0.01 and ex=0.16±0.02. The result
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for ex is consistent with that measured by impacting the ball
onto a hard floor �0.17±0.03�, but the result for ey is slightly
higher, presumably because of the lower impact speed and
the softer impact on the bat. On the other hand, Figs. 2 and 3
show that the measured �2 values are inconsistent with eT
=−0.14, which is the result expected for the bat if ex=0, as
assumed in Ref. 1.

We next investigate the more general case in which angu-
lar momentum is not conserved by fitting the data to Eqs. �8�
and �9� allowing both D and eT as adjustable parameters. By
fitting to all three data sets simultaneously, we find eT
=0±0.02 and D=0.21±0.29 mm, thereby justifying our ear-
lier neglect of D and confirming that the data are consistent
with angular momentum conservation. All the following cal-
culations assume D=0.

It is possible to determine the incident and outgoing angles
with respect to the normal, �1 and �2, from the measured
quantities v1, v2, �1, �2, and � by applying angular momen-
tum conservation about the contact point, Eq. �7�, with D
=0. Once �1 and �2 are known, it is possible to calculate the
initial and final tangential velocities, which are plotted in
Fig. 4. We see that the final tangential velocities are clustered
around zero, as would be expected for eT=0 �see Eq. �2��.
When plotted in this manner, it is clear that the data are
inconsistent with eT=−0.14. Note that the principal sensitiv-
ity to eT comes from large values of 	vx1−r�1	, which occurs
whenever vx1 and �1 have opposite signs and which leads
both to a reversal of the spin and to scattering angles which
are negative for �1�0 and positive for �1	0. Figure 3
shows that these regions have the greatest sensitivity to eT.

B. Implications for batted balls

We next explore the implications of our results for the spin
and speed of a batted ball, mindful that the present experi-
ment was done at very low speeds compared to those appro-

Fig. 4. Relation between the final and initial tangential velocity of the ball.
For eT=0, the final tangential velocity would be zero. The dashed line is the
expected result for eT=−0.14.
priate for the game of baseball. The goal of this analysis is
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not to make any definitive predictions about the spin and
speed of a batted ball but to examine the consequences of a
small positive value of ex compared to the value ex=0 as-
sumed in Ref. 1. Whether such a value of ex is realized in a
realistic ball-bat collision will have to await experiments at
higher speed.

With this caveat, we first consider our data in Fig. 5,
where we plot �2 versus the impact parameter E, which is
calculated from the inferred value of �1. These data demon-
strate that for a given E�0, a ball with initial topspin ��1

�0� has a larger outgoing backspin than a ball with initial
backspin, in qualitative agreement with Ref. 1. To investigate
the argument more quantitatively, we compare the final spin
on a fastball to that on a curveball. In this case the bat and
ball approach each other prior to the collision, thereby re-
quiring a change of reference frame to the equations we have
derived. The relevant relations, Eqs. �B2�, �B3a�, and �B3b�,
are derived in Appendix B. We assume that the initial veloc-
ity of the bat is parallel to that of the ball, but displaced by
the impact parameter E as shown in Fig. 6. The initial bat
speed is 32 m/s �71.6 mph�. The incident fastball has a
speed of 42 m/s �94 mph� and spin of −200 rad/s
�−1910 rpm�, and the incident curveball has a speed of
35 m/s �78 mph� and a spin of +200 rad/s. We use values of
the normal COR ey assumed in Refs. 1 and 12 and present
the calculated final spin as a function of E in Fig. 6 for
eT=0, as determined from our measurements, and for
eT=−0.14, as assumed in Ref. 1.

Several important features emerge from this plot. First, the
final spin �2 is less sensitive to the initial spin �1 for eT=0
than for eT=−0.14. This result is consistent with Eq. �9�,
where the first term on the right-hand side is larger for eT

Fig. 5. Plot of the final spin �2 vs the impact parameter E with v1

�4.0 m/s. These data clearly show that a ball with incident topspin ��1

�0� has a larger final spin than a ball with incident backspin ��1	0�. The
lines are linear fits to the data.
	0 than for eT=0. Our result means that the difference in
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backspin between a hit fastball and hit curveball is not as
large as has been suggested.1 Second, the gap between the
spin on the curveball and fastball decreases as E increases, a
feature that can be understood from the second term on the
right-hand side of Eq. �9�. Because the initial speed is larger
for the fastball than the curveball, the second term grows
more rapidly for the fastball as E increases, and the two
curves cross at E�2.4 in. The rate at which the two curves
converge is greater for eT=0 than for eT=−0.14. Had the
initial speeds been identical, the two curves would have been
parallel. Third, for E
0.5 in. and independent of the sign of
�1, �2 is larger when eT=0 than when eT	0, because �2 is
mainly governed by the second term on the right-hand side
of Eq. �9�. The increase in �2 is accompanied by a decrease
in vx2 as required by angular momentum conservation, and
therefore by a slightly smaller scattering angle. The outgoing
speed is dominated by the normal component, so the de-
crease in vx2 hardly affects the speed of the ball leaving the
bat, at least for balls hit on a home run trajectory.

These results have implications for whether an optimally
hit curveball will travel farther than an optimally hit fastball.
To investigate this issue in detail requires a calculation of the
trajectory of a hit baseball, much as was done in Ref. 1. This
calculation requires knowledge of the lift and drag forces on
a spinning baseball. Given the current controversy about
these forces,2 further speculation on this issue is beyond the
scope of the present work.

It is interesting to speculate on the relative effectiveness of
different bats regarding their ability to put backspin on a
baseball. As we have emphasized, the effectiveness is deter-
mined by a single parameter, eT, which is related to ex and
the recoil factor rx. For a given ex, a bat with a smaller rx will
be more effective than one with a larger rx �see Eq. �4��.
Because rx is dominated by the term involving R2 / Iz �see Eq.
�6��, we might expect it to be very different for wood and

Fig. 6. The calculated outgoing spin on a fastball ��1=−200 rad/s, v1

=42 m/s� and a curveball ��1= +200 rad/s, v1=35 m/s� for two values of
eT.
aluminum bats. The hollow thin-walled construction of an
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aluminum bat implies that it has a larger moment of inertia
about the longitudinal axis �Iz� than a wooden bat of compa-
rable mass and shape. This advantage is partially offset by
the disadvantage of having a center of mass farther from the
impact point �b is larger�, which increases rx. As a simple
exercise, we have investigated two bats with the shape of an
R161, one a solid wooden bat and the other a thin-walled
aluminum bat. Both bats are 34 in. long and weigh 31.5 oz.
The wooden bat has I0=2578 and Iz=18.0 oz in.2 and the
center of mass 22.7 in. from the knob. The aluminum bat has
I0=2985 and Iz=29.3 oz in.2 and the center of mass 20.2 in.
from the knob. With an impact 6 in. from the barrel end,
where the bat diameter is 2.625 in. and ex=0.16, we have
eT=−0.03 and 0, respectively, for the wooden and aluminum
bat. We conclude that, generally speaking, an aluminum bat
is marginally more effective in putting backspin on the base-
ball than a wooden bat of comparable mass and shape.

C. Insights into the scattering process

Besides the obvious practical implications of our result, it
is interesting to ask what it teaches us about the scattering
process itself. As mentioned, our measured value eT=0 nec-
essarily implies that ex�0.16. A value ex	0 would be ob-
tained if the ball slides on the surface throughout the colli-
sion, whereas a value ex=0 would be obtained if the ball is
rolling when it leaves the bat. However, a positive value of ex
necessarily implies tangential compliance in the ball, the bat,
or both. A rigid baseball impacting on a rigid bat without any
tangential compliance in the contact region will slide on the
bat until the contact point comes to rest, in which case it will
enter a rolling mode and will continue to roll with zero tan-
gential velocity as it bounces off the bat.13 However, a real
baseball and a real bat can store energy elastically as a result
of deformation in directions both perpendicular and parallel
to the impact surface. In that case, if tangential velocity is
lost temporarily during the collision, then it can be regained
from the elastic energy stored in the ball and the bat as a
result of tangential deformation in the contact region. The
ball will then bounce in an “overspinning” mode with
r�2�vx2 or with ex�0. The details of this process were first
established by Maw et al.14,15 The effect is most easily ob-
served in the bounce of a superball,16 which has a tangential
coefficient of restitution typically greater than 0.5.3,4 A
simple lumped-parameter model for the bounce of a ball with
tangential compliance has been developed by Stronge.17

As mentioned, the signature for continuous sliding
throughout the collision is ex	0. Referring to Fig. 4, data
with ex	0 would lie above or below the dashed line for
values of vx1−r�1 greater than or less than zero, respec-
tively. Not a single collision satisfies that condition in the
present data set, suggesting that �k is large enough to bring
the sliding to a halt. Therefore the scattering data can be used
to set a lower limit on �k, which must be at least as large as
the ratio of tangential to normal impulse to the center of
mass of the ball:

�k �

Fdt


Ndt
=

vx2 − vx1

�1 + eA�vy1
. �10�

In Fig. 7 values of the right-hand side of Eq. �10� are plotted
as a function of the initial ratio of tangential to normal speed.
If we use the results derived in Appendix A, it is straightfor-

ward to show that these quantities are linearly proportional
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with a slope equal to �2/7��1+eT� / �1+eA�, provided that the
initial velocity ratio is below the critical value needed to halt
the sliding. Stronge has shown17 and we confirm with our
own formalism that the critical value is �7/2��k�1+eA��1
+rx�, which in our experiment assumes the numerical value
5.6�k. Above the critical value, the impulse ratio should
be constant and equal to �k. Given that the data still fol-
low a linear relationship up to an initial velocity ratio of
2.4, corresponding to an impulse ratio of 0.50, we con-
clude that �k�0.50. If the actual �k were as small as 0.50,
the critical value of the initial velocity ratio would be 2.8,
which exceeds the maximum value in our experiment. The
lower limit of 0.50 is larger than the lower limit of 0.31
that we measured from oblique collisions of a nonspinning
ball with the floor. For that experiment the angle with the
horizontal needed to achieve continuous slipping is less
than 20°, which is smaller than our minimum angle of 25°.
Although no attempt was made to measure the ball-bat �k
directly, our lower limit is consistent with �k=0.50±0.04
measured in Ref. 1.

Finally, we remark on our finding that the scattering data
are consistent with D�0, implying that the angular momen-
tum of the ball is conserved about the initial contact point. At
low enough initial speed, the deformation of the ball will be
negligible, so that the ball and bat interact at a point and the
angular momentum of the ball is necessarily conserved about
that point. Evidently, this condition is satisfied at 4 m/s ini-
tial speed. It is interesting to speculate whether this condition
will continue to be satisfied at the much higher speeds in the
game of baseball, where the ball experiences considerable
deformation and a significant contact area during the colli-
sion. Simple physics considerations4 suggest that it will not.
A ball with topspin incident at an oblique angle will have a
larger normal velocity at the leading edge than the trailing
edge, resulting in a shift of the line of action of the normal

Fig. 7. The ratio of the tangential to normal impulse, Eq. �10�, as a function
of the initial ratio of the tangential to normal speed. The line is the expected
impulse ratio for eA=0.375 and eT=0.
force ahead of the center of mass of the ball �D�0�. A
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similar shift occurs when brakes are applied to a moving
automobile, resulting in a larger normal force on the front
wheels than on the back. Such a shift has been observed in
high speed collisions of tennis balls.4,19 Whether a compa-
rable shift occurs in high-speed baseball collisions will have
to be answered with appropriate experimental data.

V. SUMMARY AND CONCLUSIONS

We have performed a series of experiments in which a
baseball is scattered from a bat at an initial speed of about
4 m/s. For the bat that was used in the experiment, we find
the horizontal apparent coefficient of restitution eT is consis-
tent with 0 and inconsistent with the value −0.14 that would
be expected if the ball is rolling at the end of its impact.
These results necessarily imply tangential compliance in the
ball, the bat, or both. We further find that the data are con-
sistent with conservation of angular momentum of the ball
about the contact point and with a coefficient of sliding fric-
tion between the ball and bat larger than 0.50. Our results
suggest that a curveball can be hit with greater backspin than
a fastball, but by an amount that is less than would be the
case in the absence of tangential compliance. Because our
investigations were done at low speed, we must proceed with
caution before applying them to the higher speeds that are
typical of baseball games.

APPENDIX A: RELATIONSHIP BETWEEN eT AND ex

We derive for tangential collisions the relation, Eqs. �4�
and �6�, between eT and ex. The derivation follows closely
that presented in Ref. 8 for the relation between eA and ey.

We first solve the simple problem involving the collision
of two point objects in one dimension. Object A of mass m
and velocity v1 is incident on stationary object B of mass M.
Object A rebounds backward with velocity v2 and object B
recoils with velocity V. Our sign convention is that v1 is
always positive and v2 is positive if the latter is in the oppo-
site direction to v1. The collision is completely determined
by conservation of momentum

� Fdt = m�v2 + v1� = MV , �A1�

and the coefficient of restitution

e �
v2 + V

v1
, �A2�

where F is the magnitude of the force that the two objects
exert on each other. We define the apparent coefficient of
restitution

eA �
v2

v1
, �A3�

and seek a relation between eA and e. We use Eq. �A3� and
write e as

e = eA +
V

v1
. �A4�
We then use Eq. �A1� to find
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V

v1
= �1 + v2/v1�

m

M
, �A5�

from which we derive the desired expression

eA =
e − m/M

1 + m/M
. �A6�

We next generalize this derivation for the collision of ex-
tended objects, as shown in Figs. 1 and 8. A ball of mass m
and radius r is incident obliquely in the xy plane on a sta-
tionary bat of mass M and radius R at the impact point. The
origin of the coordinate system is at the center of mass of the
bat, with the z axis along the longitudinal axis and the x and
y axes in the tangential and normal directions, respectively.
The impact point P has the coordinates �0,R ,b�. The ball is
incident with angular velocity �1 and linear velocity compo-
nents vx1 and vy1; it rebounds with angular velocity �2 and
linear velocity vx2 and vy2, where the angular velocities are
about the z axis. The bat recoils with center of mass �c.m.�
velocity components Vx and Vy and with angular velocity
about the c.m. with components �x, �y, and �z. Let vp1, vp2,
and Vp denote the pre- and post-impact velocities of the ball
and the post-impact velocity of the bat at the point P, respec-
tively. Because we are concerned with tangential collisions,
we only consider the x components of these velocities, which
are given by

vp1x = vx1 − r�1, �A7a�

vp2x = vx2 − r�2, �A7b�

Vpx = Vx + b�y + R�z. �A7c�

From the definitions in Eqs. �1� and �2�, we have

ex = −
vp2x − Vpx

vp1x
, �A8a�

eT = −
vp2x

vp1x
. �A8b�

We apply the impulse-momentum expressions to the bat and
find

� Fdt = MVx, �A9a�

b Fdt = I � , �A9b�

Fig. 8. Geometry for relating eT and ex. The origin of the coordinate system
is at the center of mass of the bat, indicated by the dot on long axis of the bat
in �a�. The z axis points along the long axis toward the barrel. The x and y
axes point along the tangential and normal directions, respectively. The solid
arrow indicates the initial velocity of the ball. The black dot labels the point
of contact P between ball and bat. In �b� the z axis points out of the plane.
� 0 y
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R� Fdt = Iz�z, �A9c�

where it has been assumed that the bat is symmetric about
the z axis so that Ix= Iy � I0. If we combine Eq. �A9� with Eq.
�A7�, we find

� Fdt = MexVpx, �A10�

where Mex, the bat effective mass in the x direction, is given
by

1

Mex
=

1

M
+

b2

I0
+

R2

Iz
. �A11�

If we apply the impulse-momentum expressions to the ball,
we find

� Fdt = − m�vx2 − vx1� , �A12a�

r� Fdt − D� Ndt = �mr2��2 − �1� . �A12b�

We note that 
Ndt= �1+eA�mvy1 and combine Eq. �A12� with
Eq. �A7� and find

� Fdt = − mex�vp2x − vp1x� +
mexDvy1�1 + eA�

r�
, �A13�

where mex, the ball effective mass in the x direction, is given
by

mex =
�

1 + �
m . �A14�

If we combine Eqs. �A10� and �A13�, we arrive at

− mex�vp2x − vp1x� +
mexDvy1�1 + eA�

r�
= MexVpx, �A15�

which is analogous to the momentum conservation equation
for point bodies, Eq. �A1�, provided the velocities refer to
those at the contact point P and the masses are effective
masses. Following the derivation for point masses, we com-
bine Eq. �A15� with the definitions of ex and eT to arrive at
the result

eT =
ex − mex/Mex

1 + mex/Mex
+

D

r�
� rx

1 + rx
�vy1�1 + eA�

�vx1 − r�1�
. �A16�

If we define rx=mex/Mex and assume that �=2/5, then Eq.
�A16�, along with Eqs. �A11� and �A14�, is identical to Eqs.
�4� and �6�. Our results are equivalent to those used in Ref. 1.
We note that Stronge17 has derived an expression that is
equivalent to Eq. �6� for the special case of a bat with zero
length, implying b=0, and D=0.

APPENDIX B: COLLISION FORMULAS IN THE
LABORATORY REFERENCE FRAME

Equations �8� and �9� for vx2 and �2 are valid in the ref-
erence frame in which the bat is initially at rest at the impact
point. The usual �or laboratory� frame that is relevant for
baseball is the one where both the bat and ball initially ap-

proach each other. We now derive relations for vx2 and �2 in
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the laboratory frame. Our coordinate system is the same as
that shown in Fig. 8, where the y axis is normal and the x
axis is parallel to the ball-bat contact surface. In this system
the initial velocity components of the bat and ball at the
impact point are denoted by �Vx ,Vy� and �vx1−r�1 ,vy1�, re-
spectively, where the usual situation has Vy �0 and vy1	0.
In the bat rest frame, the components of the ball initial ve-
locity at the impact point are therefore �vx1−r�1−Vx ,vy1

−Vy�. If we apply the definitions of eT and eA, the compo-
nents of the ball velocity after the collision are given by

vx2 − r�2 − Vx = − eT�vx1 − r�1 − Vx� , �B1a�

vy2 − Vy = eA�vy1 − Vy� , �B1b�

which can be rearranged to arrive at

vx2 − r�2 = − eT�vx1 − r�1� + �1 + eT�Vx, �B2a�

vy2 = eAvy1 + �1 + eA�Vy . �B2b�

Finally, we combine Eq. �B2a� with the expression for angu-
lar momentum conservation, Eq. �7�, to find

vx2 = vx1
1 − �eT

1 + �
+ �r�1 + Vx�

��1 + eT�
1 + �

, �B3a�

r�2 = r�1
� − eT

1 + �
+ �vx1 − Vx�

�1 + eT�
1 + �

. �B3b�

Equations �B2� and �B3� are the desired results. Equation
�B2b� has appeared in the literature many times.18,19 To our
knowledge, this is the first time an explicit formula for vx2
and �2 in the laboratory frame has been given. Although
explicit relations were not given, the earlier works of Ref. 1
and Watts and Baroni20 are equivalent to ours for the special
case ex=0, the latter being equivalent to eT=−0.137 for our
bat. Our relations represent a generalization of their work for
arbitrary ex.
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